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Abstract: Every quantum computation can be described by a probabilistic update of a probability distribution over a finite set of hidden variables. This description is
closely related to classical simulation algorithms for quantum computations based on sampling from Wigner functions, except that Wigner functions can take negative
values obstructing the sampling. Indeed, negativity in Wigner functions has been identified as a precondition for a quantum speed-up. However, if sufficiently general
(quasi)probability functions are admitted, there is no need for any negativity at all. The question of interest for the present work is how much classical information the
simulation of quantum computations must track, i.e., What is the length of the bit strings returned by the sampling? If it turned out that those bit strings were very long,
say exponentially long in the number n of qubits, this would provide a convenient explanation for the hardness of classical simulation of universal quantum computation.
However, we find that the bit strings are short: O(n2). Thus, the presumed hardness of this simulation must come from the computational hardness of the sampling
processes involved. These results are consistent with Gleason’s theorem and the Pusey-Barrett-Rudolph theorem, and have a connection to Wheeler’s “It from Bit”.

Quantum computation with magic

Quantum computation with magic states (QCM) [1] is
a universal model of quantum computation in which:
• The operations are restricted to stabilizer oper-
ations (Clifford gates and Pauli measurements).
These alone are not universal for quantum compu-
tation and can be efficiently simulated classically.

• Universality is restored by additional nonstabilizer
quantum states at the input of the circuit.

For example, a (non-Clifford) T := diag(1, exp(iπ/4))
gate is implemented as

|H⟩ • SX T |ψ⟩

|ψ⟩

where |H⟩ = (|0⟩ + eiπ/4 |1⟩)/
√
2 is a magic state.

Definitions
• Measurements in QCM are n-qubit Pauli observ-
ables which can be labelled by elements of Z2n

2 .
For any Pauli observable Ta, a ∈ Z2n

2 , the projec-
tor corresponding to measurement outcome s ∈ Z2

is Πs
a := (1 + (−1)sTa)/2.

• The Clifford group Cℓn consists of all unitary gates
that map Pauli operators to Pauli operators under
conjugation.

• Let Herm1(C2n) be the Tr = 1 Hermitian operators
on C2n, and Sn the set of n-qubit stabilizer states.

The Λ polytope model

For any number n of qubits, we define a polytope

Λn =
{
X ∈ Herm1

(
C2n

)
| Tr(|σ⟩ ⟨σ|X) ≥ 0 ∀ |σ⟩ ∈ Sn

}
.

Denote by {Aα | α ∈ Vn} the (finite) set of vertices of
Λn. The Λ polytope mode is defined by the following
theorem.

Theorem 1 (Ref. [2]) For any number of qubits n,
1. Any quantum state ρ can be decomposed as

ρ =
∑
α∈Vn

pρ(α)Aα,

with pρ(α) ≥ 0 for all α ∈ Vn, and
∑

α pρ(α) = 1.
2. For any Aα, α ∈ Vn, and any Clifford gate g,
gAαg

† =: Ag·α is a vertex of Λn with g · α ∈ Vn.
3. For any Aα, α ∈ Vn, and any Pauli projector Πs

a,

Πs
aAαΠ

s
a =

∑
β∈Vn

qα,a(β, s)Aβ,

with qα,a(β, s) ≥ 0 ∀β, s, and
∑

β,s qα,a(β, s) = 1.

This theorem describes a hidden variable model for
QCM in which (1) states are represented by probabil-
ity distributions pρ over Vn, (2) Clifford gates and Pauli
measurements are represented by stochastic maps,
g · − : Vn → Vn and qα,a : Vn × Z2n

2 → Vn × Z2.

Classical simulation of QCM

A classical simulation algorithm for QCM based on
the Λ polytope model is given below.

1: sample α ∈ Vn according to pρ : Vn → R≥0

2: propagate α through the circuit
3: while end of circuit has not been reached do
4: if Clifford gate g ∈ Cℓn is encountered then
5: update the phase space point α ↢ g · α
6: if Pauli measurement a is encountered then
7: sample (β, s) ∈ Vn × Z2 according to qα,a
8: return s ∈ Z2 as the measurement outcome
9: update the phase space point α ↢ β

This algorithm returns samples from the distribution
of measurement outcomes for the quantum circuit
being simulated which agree with the predictions of
quantum theory.

“Its” to “Bits”

Naively, the number of bits required to specify a sam-
ple α ∈ Vn in the simulation of a quantum computation
is log2(|Vn|). However, this can be reduced using the
following simple insight: in the QCM model, for any
fixed value n, all quantum computations start in the
same magic state |M⟩⊗n. Thus, the question of inter-
est for classical simulation of QCM using Λ polytopes
is not “What is the size of the phase space Vn?”, but
rather “What is the size of the region of Vn that can be
reached from the initial state |M⟩⊗n?”.

For universal quantum computation, it suffices to con-
sider adaptive sequences of commuting Pauli mea-
surements of length n acting on a fixed magic state
|M⟩⊗n [3]. For this restricted (but still universal) model
of QCM, we have the following result.

Theorem 2 (Ref. 4, Main result) Any quantum com-
putation consisting of a sequence of n independent,
pair-wise commuting Pauli measurements on a fixed
magic state |M⟩⊗n can be simulated using a mem-
ory of 2n2 + 3n bits to specify the phase space points
reached.

For a QCM computation on state ρ, and the corre-
sponding simulation based on the Λ polytopes, the
memory requirements are summarized by the follow-
ing diagram:

ρ
a1−−−→ s1

a2−−−→ s2
a3−−−→ s3 · · ·

pρ
qα0,a1−−→ (α1, s1)

aα1,a2−−→ (α2, s2)
qα2,a3−−→ (α3, s3) · · ·

α0
a1−−−→ (α1, s1)

a2−−−→ (α2, s2)
a3−−−→ (α3, s3) · · ·

2n +2n +2n + 1 +2n +2n + 1 +2n 2n + 1 · · ·

If we admit arbitrarily long sequences of (poten-
tially non-commuting) Pauli measurements and Clif-
ford gates, we find that the memory requirement
merely doubles (see Corollary 1 of Ref. [4]).
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Gleason’s theorem

Gleason’s theorem says that in Hilbert spaces H of
dimension 3 or greater, the only consistent way to as-
sign probabilities to all measurement outcomes (sub-
spaces h ⊂ H) represented by projectors Πh, is via
the Born rule Tr(ρΠh) for some density matrix ρ. Glea-
son’s theorem is sometimes interpreted as a math-
ematical proof that density operators are the funda-
mental notion of state in quantum theory. We show
that every quantum state can be described by a prob-
ability distribution, and yet the Born rule is repro-
duced. This is possible because we restrict measure-
ments to Pauli observables. This does not affect the
universality of quantum computation!

The PBR theorem

The Λ polytope model is Ψ-epistemic. The PBR theo-
rem [5] asserts that no Ψ-epistemic model can repro-
duce the predictions of quantum theory. Our result
does not contradict the PBR theorem for two reasons.
First, we consider only sequences of Pauli measure-
ments rather than general measurements. Second,
our model does not satisfy the assumption of prepa-
ration independence required for the theorem to hold.
That is, in general, pρ1⊗pρ2 ̸= pρ1 ·pρ1. The assumption
of preparation independence is less relevant for quan-
tum computation with magic states, where, in the lan-
guage of resource theories, the free sector is formed
by stabilizer states and stabilizer operations, not lo-
cal states and local operations. Further, the memory
lower bound of Karanjai, Wallman, and Bartlett [7]
shows that a classical simulation algorithm like that
above is incompatible with this assumption.

Wheeler’s “It from Bit”

In an article of 1989 [3], John Archibald Wheeler ar-
gued that quantum physics required a new perspec-
tive on reality based on information theoretic con-
cepts. He wrote:

No element in the description of physics shows it-
self as closer to primordial than the elementary
quantum phenomenon, that is, the elementary
device-intermediated act of posing a yes-no phys-
ical question and eliciting an answer or, in brief,
the elementary act of observer-participancy. Oth-
erwise stated, every physical quantity, every it,
derives its ultimate significance from bits, binary
yes-or-no indications, a conclusion we epitomize
in the phrase, it from bit.

A prototypical realization of this view is provided in
the description of QCM through the Λ polytopes. The
“It” in this case is universal quantum computation,
and hence all non-relativistic quantum mechanics in
finite-dimensional Hilbert spaces. The “Bits” repre-
sent the binary outcomes of Pauli measurements and
the labels of the vertices of the Λ polytopes. A cru-
cial feature of the Λ polytope model is that the quan-
tum state |Ψ(t)⟩ of the system is replaced by a bit
string b(t) of bounded length. This description of
the system’s state does not invoke any approxima-
tion, b(t) is a valid and accurate representation of the
quantum system, and the distributions of measure-
ment outcomes sampled from are the exact quantum-
mechanical ones. The data representing the system
is genuinely discrete, thus, we regard the Λ polytope
model as a realization of Wheeler’s proposal.


