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Abstract: We present the generalization of the CNC formalism, based on closed and noncontextual sets of Pauli observables, to the setting of odd-prime-dimensional qudits. By introducing new
CNC-type phase space point operators, we construct a quasiprobability representation for quantum computation which is covariant with respect to the Clifford group and positivity preserving
under Pauli measurements, and whose nonnegative sector strictly contains the subtheory of quantum theory described by nonnegative Wigner functions. This allows for a broader class of
magic state quantum circuits to be efficiently classically simulated than those covered by the stabilizer formalism and Wigner function methods. For more details, see the preprint Ref. [6].

Magic state quantum computation (QCM)
QCM [1] is a model of quantum computation in which:
•Allowed operations are restricted to stabilizer operations—
Clifford gates and Pauli measurements.

•These alone are not universal for quantum computation,
and they can be efficiently simulated classically.

•Universality is restored by additional nonstabilizer quan-
tum states at the input of the circuit.

For example, a T gate is implemented by the following circuit

|H⟩ • SX T |ψ⟩

|ψ⟩
where |H⟩ = (|0⟩ + eiπ/4 |1⟩)/

√
2.

Definitions

•Let Herm(Cdn) denote the Hermitian operators on Cdn,
and Sn the set of n-qudit stabilizer states.

•Measurements are n-qudit Pauli observables which we la-
bel by Z2n

d . Eigenvalues of Paulis are ωk, k ∈ Zd where
ω = exp(2πi/d). For any Pauli Ta, a ∈ Z2n

d , the projec-
tor for measurement outcome s ∈ Zd is denoted Πs

a.

•The Clifford group Cℓ is the group of unitary gates that
map Pauli operators to Pauli operators under conjugation.

Quasiprobability simulation methods
Define a set {Aα |α ∈ V} ⊂ Herm(Cdn) with the properties:

1. span({Aα | α ∈ V}) = Herm(Cdn),

2. Tr(Aα) = 1 ∀α ∈ V ,
3. For any Clifford gate g ∈ Cℓ,

gAαg
† = Ag·α,

4. For any Pauli projector Πs
a,

Πs
aAαΠ

s
a =

∑
β

qα,a(β, s)Aβ

with qα,a(β, s) ≥ 0 and
∑

β,s qα,a(β, s) = 1.

Then in the quasiprobability representation:

• States are represented as

ρ =
∑
α∈V

Wρ(α)Aα

with
∑

αWρ(α) = 1 (follows from properties 1 & 2)

•Computational dynamics represented by properties 3 & 4

Classical simulation of QCM
When Wρ ≥ 0, it is a probability distribution over V .

ρ =⇒ Clifford gates+
Pauli Measurements

=⇒ Measurement
outcomes

To simulate a circuit with input state Wρ ≥ 0,

1: sample α ∈ V from Wρ, propagate α through circuit
2: while the end of the circuit has not been reached do
3: if a Clifford gate g ∈ Cℓ is encountered then
4: update phase space point according to α ↢ g · α
5: if a Pauli measurement a ∈ Z2n

d is encountered then
6: sample (β, s) ∈ V × Zd according to qα,a
7: return s as the outcome of the measurement
8: update phase space point according to α ↢ β

This returns samples from the distribution of measurement
outcomes for the circuit which agree with the predictions of
quantum theory.

Handling negative quasiprobabilities

•When Wρ ̸≥ 0, we simulate using the procedure from
Ref. [2] by sampling from P (α) := Wρ(α)/||Wρ||1.

•The cost of classical simulation (number of samples to
achieve a given probability of error) scales with ||Wρ||21.

The Wigner function
The Wigner function is a quasiprobability representation for
quantum computation on odd-dimensional qudits.

•Points in phase space are identified with noncontextual
assignments γ : Z2n

d → Zd — functions satisfying

TaTb = TbTa =⇒ ω−γ(a)−γ(b)TaTb = ω−γ(a+b)Ta+b ∀a, b

• In odd dimensions, this is equivalent to γ ∈ (Z2n
d )∗

•Phase space points come with phase space point operators

Aγ =
1

dn

∑
b∈Z2n

d

ω−γ(b)Tb.

•The Wigner function [3] of state ρ is defined by the ex-
pansion coefficients in

ρ =
∑
γ

Wρ(γ)A
γ

•By orthogonality of Aγ operators, Wρ(γ) =
1
dn Tr(ρA

γ).

Phase space simulation method
When Wρ ≥ 0, it is a probability distribution over Z2n

d .

1. Sample γ according to Wρ

2. PropagateAγ through the circuit. Computational dynam-
ics map points to distributions over phase space:
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3. For Pauli measurements a, return γ(a) as the outcome.

No-go results for multiqubit Wigner functions
No Wigner function on qubits can be defined which has the
properties required to simulate quantum computations:

1. No Wigner function on even-dimensional qudits is Clifford
covariant [4; Theorem 5]

2. No Wigner function on even-dimensional qudits preserves
nonnegativity under Pauli measurements [4; Theorem 8]

The CNC model circumvents these no-go results by relaxing
the assumptions that define a Wigner function to get a new
quasiprobability representation.

The CNC model
Consider a set of Pauli observables Ω ⊂ Z2n

d satisfying

1. Closure under inference: ∀a, b ∈ Ω,

TaTb = TbTa =⇒ a + b ∈ Ω

2. Noncontextuality: ∃γ : Ω → Zd such that ∀a, b ∈ Ω,

TaTb = TbTa =⇒ ω−γ(a)−γ(b)TaTb = ω−γ(a+b)Ta+b

The set of operators{
Aγ

Ω :=
1

2n

∑
b∈Ω

ω−γ(b)Tb

∣∣∣∣ ∀Ω, γ
}

define a quasiprobability representation [5].
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•For qubits, CNC sets cannot include state-independent
proofs of contextuality like the Mermin square.

• In odd dimensions, there are no state-independent proofs
of contextuality on Pauli observables [4]

⇒CNC phase space is characterized by sets that are
closed under inference (see Theorem 2).

Multiqubit CNC model
The multiqubit CNC operators can be characterized:

Theorem 1 ([5])A set Ω ⊂ Z2n
2 is CNC iff

Ω =

ξ⋃
k=1

⟨ak, I⟩

where Ta pair-wise commute ∀a ∈ I, all Tak commute
with all Ta, a ∈ I, and ak satisfy TaiTaj = (−1)1−δi,jTajTai.

Equivalently, for any CNC operator Aγ
Ω,

Aγ
Ω = g(Aγ̃

Ω̃
⊗ |σ⟩ ⟨σ|)g†

where g ∈ Cℓ, |σ⟩ is a stabilizer state, and

Aγ̃

Ω̃
=

1

2n

∑
b∈Ω̃

(−1)γ̃(b)Tb, with {Ta, Tb} = 2δa,b ∀a, b ∈ Ω̃.

Multiqudit CNC model
The multiqudit CNC phase space points can be classified:

Theorem 2For any number of qudits n of any odd-prime
dimension d, a set Ω ⊂ Z2n

d is closed under inference iff

(i)Ω is a subspace of Z2n
d , or

(ii)Ω has the form

Ω =

ξ⋃
k=1

⟨ak, I⟩

where Ta pair-wise commute ∀a ∈ I, all Tak commute
with all Ta, a ∈ I, and the ak satisfy [Tai, Taj] ̸= 0.

•For the case Ω = Z2n
d , the CNC operators Aγ

Ω are the
Wigner function phase space point operators.

⇒CNC phase space contains the usual phase space

•When Ω =
⋃
k⟨ak, I⟩, there are nonlinear noncontextual

assignments γ : Ω → Zd.
–These look like the multiqubit CNC points.

– In this case the operators Aγ
Ω are not Wigner function

phase space points or convex mixtures of them.

Conclusion
We present the generalization of the CNC construction [5]
to the setting of odd-prime-dimensional qudits. We provide
a characterization of the CNC phase space in this setting,
and we describe its relation to other models like the Wigner
function [3] and the Λ polytope models. The phase space of
this model contains the phase space of the Wigner function,
but it also includes new phase space points which cannot be
described as convex mixtures of Wigner function phase space
points. We also show that all vertices of the Λ polytopes with
coefficients of absolute value equal to one when expanded in
the Pauli basis are CNC-type phase space point operators.

We introduce a classical simulation algorithm for quantum
computation with magic states based on sampling from
probability distributions over the CNC phase space. Since
the CNC construction outperforms the Wigner function and
stabilizer methods in terms of the volume of states that can
be positively represented, this new method allows a broader
class of magic state quantum circuits to be efficiently classi-
cally simulated.

For more details, see the preprint Ref. [6].
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