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Abstract: Negativity in certain quasiprobability representations is a necessary condition for a quantum computational advantage. Here we define a new quasiprobability representation
exhibiting this property with respect to quantum computations in the magic state model. It is based on generalized Jordan-Wigner transformations and it has a close connection to the
probability representation of universal quantum computation based on the Λ polytopes. For each number of qubits it defines a polytope contained in the Λ polytope with some shared vertices.
It leads to an efficient classical simulation algorithm for magic state quantum circuits for which the input state is positively represented, and it outperforms previous representations in terms
of the states that can be positively represented.

Magic state quantum computation (QCM)
QCM [1] is a model of quantum computation in which:
•The allowed operations are restricted to stabilizer oper-
ations (Clifford gates and Pauli measurements). These
operations alone are not universal for quantum computa-
tion and can be efficiently simulated classically.

•Universality is restored by additional nonstabilizer quan-
tum states at the input of the circuit.

For example, a T gate is implemented by the following circuit

|H⟩ • SX T |ψ⟩

|ψ⟩
where |H⟩ = (|0⟩ + eiπ/4 |1⟩)/

√
2.

Definitions

•Measurements in QCM are n-qubit Pauli observables
which can be labelled by elements of Z2n

2 . For any Pauli
observable Ta, a ∈ Z2n

2 , the projector corresponding to
measurement outcome s ∈ Z2 is Π

s
a := (1 + (−1)sTa)/2.

•The Clifford group Cℓn is the group of unitary gates that
map Pauli operators to Pauli operators under conjugation.

•Let Herm1(C2n) denote the Hermitian operators on C2n

with Tr = 1, and Sn the set of n-qubit stabilizer states.

Quasiprobability simulation methods
Define a set {Aα | α ∈ V} ⊂ Herm(C2n) with the properties:

1. span({Aα}) = Herm(C2n), 2. Tr(Aα) = 1 ∀α,
3. For any Clifford gate g ∈ Cℓ, gAαg

† = Ag·α,

4. For any Pauli projector Πs
a,

Πs
aAαΠ

s
a =

∑
β

qα,a(β, s)Aβ

with qα,a(β, s) ≥ 0 and
∑

β,s qα,a(β, s) = 1.

Then in the quasiprobability representation:

• States are represented as

ρ =
∑
α∈V

Wρ(α)Aα

with
∑

αWρ(α) = 1 (follows from properties 1 & 2)

•Dynamics are represented by properties 3 & 4

Classical simulation of QCM
To simulate a circuit of the form:

ρin ⇒
Stabilizer operations:

Clifford gates+
Pauli Measurements

⇒ Output

with Wρin ≥ 0,

1: sample α ∈ Vn according to pρ : Vn → R≥0

2: propagate α through the circuit
3: while the end of the circuit has not been reached do
4: if a Clifford gate g ∈ Cℓn is encountered then
5: update the phase space point according to α ↣ g ·α
6: if a Pauli measurement a ∈ Z2n

2 is encountered then
7: sample (β, s) ∈ Vn × Z2 according to qα,a
8: return s ∈ Z2 as the outcome of the measurement
9: update the phase space point according to α ↣ β

This algorithm returns samples from the distribution of mea-
surement outcomes for the quantum circuit being simulated
which agree with the predictions of quantum theory.

Handling “negative probabilities”

•When Wρin ̸≥ 0, we simulate using the procedure from
Ref. [2] by sampling from P (α) := Wρin(α)/||Wρin||1.

•The cost of classical simulation (number of samples to
achieve a given probability of error) scales with ||Wρin||21.

The CNC model
Consider a set of Pauli observables Ω ⊂ Z2n

2 such that

1. ∀a, b ∈ Ω, TaTb = TbTa =⇒ a + b ∈ Ω

2. ∃γ : Ω → Z2 such that ∀a, b ∈ Ω

TaTb = TbTa =⇒ (−1)γ(a)+γ(b)TaTb = (−1)γ(a+b)Ta+b

The set of operators{
Aγ

Ω :=
1

2n

∑
b∈Ω

(−1)γ(b)Tb

∣∣∣∣ ∀Ω, γ
}

define a quasiprobability representation [3].

The CNC operators can be characterized:

Theorem 1 (Ref. 3)For any CNC operator Aγ
Ω,

Aγ
Ω = g(Aγ̃

Ω̃
⊗ |σ⟩ ⟨σ|)g†

where g ∈ Cℓ, |σ⟩ is a stabilizer state, and

Aγ̃

Ω̃
=

1

2n

∑
b∈Ω̃

(−1)γ̃(b)Tb, with {Ta, Tb} = 2δa,b ∀a, b ∈ Ω̃.

Tbs have anti-commutation relations of Majorana operators.

Jordan-Wigner transformations
Any Hamiltonian can be expanded in Pauli operators

H =
∑
a

caTa.

Definition 1The frustration graph G(H) is a graph with

• a ∈ vert(G) ⇐⇒ ca ̸= 0

• a ∼ b ⇐⇒ {Ta, Tb} = 0

Theorem 2 (Ref. 4)Given an n-qubit Hamiltonian in
the Pauli basis for which the frustration graph G is the
line graph of another graph R, then there exists a free-
fermion description of H.

Line graphs

L(R) has a vertex for each edge of R; vertices in L(R) are
adjacent iff edges of R share a vertex.
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Quasiprobability model from JW transforms
We construct operators by the following procedure [5]

1. Choose a support Ω ⊂ Z2n
2 such that G(Ω) is a line graph.

2. Project Λ onto span(Ω), the result is a new polytope ΛΩ.

3. Choose a vertex A ∈ vert(ΛΩ),

A =
∑
a∈Ω

caTa

4. Choose a stabilizer state |σ⟩ and a Clifford gate g ∈ Cℓ,
return

g(A⊗ |σ⟩ ⟨σ|)g†.
The set of operators constructed in this way defines a
quasiprobability representation.

Connection to the Λ polytope model
For each number n of qubits, we define a polytope

Λn =
{
X ∈ Herm

(
C2n
)
| Tr(|σ⟩ ⟨σ|X) ≥ 0 ∀ |σ⟩ ∈ Sn

}
.

Denote by {Aα | α ∈ Vn} the (finite) set of vertices of Λn.

Theorem 3 (Ref. 6)For any number of qubits n,

1. Any n-qubit quantum state ρ can be decomposed as

ρ =
∑
α∈Vn

pρ(α)Aα,

with pρ(α) ≥ 0 for all α ∈ Vn, and
∑

α pρ(α) = 1.

2. For any Aα, α ∈ Vn, and any Clifford gate g ∈ Cℓn,
gAαg

† is a vertex of Λn. This defines an action of the
Clifford group on Vn as gAαg

† =: Ag·α where g ·α ∈ Vn.
3. For any Aα, α ∈ Vn, and any Pauli projector Πs

a,

Πs
aAαΠ

s
a =

∑
β∈Vn

qα,a(β, s)Aβ,

with qα,a(β, s) ≥ 0 ∀β, s, and
∑

β,s qα,a(β, s) = 1.

This theorem describes a hidden variable model (HVM) for
QCM in which (1) states are represented by probability dis-
tributions pρ over Vn, (2) Clifford gates and Pauli measure-
ments are represented by stochastic maps g · α and qα,a.

New vertices of Λ

Theorem 4 (Ref. 6)For any CNC pair (Ω, γ), if Ω is
maximal then

Aγ
Ω :=

1

2n

∑
a∈Ω

(−1)γ(a)Ta

is a vertex of Λ.

Theorem 5 (Ref. 5)∀Ω ⊂ Z2n
2 s.t. G(Ω) ≃ L(K2n+1),

there exists a choice of signs η such that

Aη
Ω =

1

2n

(
1 +

1

n

∑
b∈Ω

(−1)η(b)Tb

)
is a vertex of Λ.

Main takeaway
The big question about the Λ polytopes [6] is where the
line between efficient and inefficient classical simulation of
quantum computation lies. Here, we increase the size of
the known efficiently simulable region. Our construction is
based on Jordan-Wigner transformations, and its range of
applicability includes the earlier CNC construction [3], which
in turn includes the stabilizer formalism.
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