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Abstract: A recently introduced classical simulation method for universal quantum computation with magic states operates by repeated sampling from probability functions [1]. This description
of quantum computation is closely related to sampling algorithms based on Wigner functions, with the important distinction that Wigner functions can take negative values obstructing the
sampling. Indeed, negativity in Wigner functions has been identified as a precondition for a quantum speed-up. However, it turns out that once sufficiently general (quasi)probability functions
are admitted, there is no need for any negativity at all. Universal quantum computation can be described by repeated sampling from a generalized phase space whose points are labeled by the
vertices of the Λ polytopes. This process essentially resembles a random walk, with the complication that the transition function changes from one time step to the next and can depend on the
prior sampling history. The question of interest for the present work is how much classical information the simulation of quantum computations must track, i.e. What is the length of the bit
strings returned by the sampling? For example, if it turned out that those bit strings were very long, say exponentially long in the number n of magic states, this would provide a convenient
explanation for the hardness of classical simulation of universal quantum computation using Λ polytopes. If the information storage itself is inefficient, so is the processing. However, this is not
what we find. We find that the bit strings are short: O(n2). Thus, the presumed hardness of this simulation must come from the computational hardness of the sampling processes involved.

Magic state quantum computation (QCM)
QCM is a universal model of quantum computation in which:
•The allowed operations are restricted to stabilizer oper-
ations (Clifford gates and Pauli measurements). These
operations alone are not universal for quantum computa-
tion and can be efficiently simulated classically.

•Universality is restored by additional nonstabilizer quan-
tum states at the input of the circuit.

For example, a T gate is implemented by the following circuit

|H⟩ • SX T |ψ⟩

|ψ⟩
where |H⟩ = (|0⟩ + eiπ/4 |1⟩)/

√
2.

Definitions

•Measurements in QCM are n-qubit Pauli observables
which can be labelled by elements of Z2n

2 . For any Pauli
observable Ta, a ∈ Z2n

2 , the projector corresponding to
measurement outcome s ∈ Z2 is Π

s
a := (1 + (−1)sTa)/2.

•The Clifford group Cℓn is the group of unitary gates that
map Pauli operators to Pauli operators under conjugation.

•Let Herm1(C2n) denote the Hermitian operators on C2n

with Tr = 1, and Sn the set of n-qubit stabilizer states.

The Λ polytope model
For each number n of qubits, we define a polytope

Λn =
{
X ∈ Herm

(
C2n

)
| Tr(|σ⟩ ⟨σ|X) ≥ 0 ∀ |σ⟩ ∈ Sn

}
.

Denote by {Aα | α ∈ Vn} the (finite) set of vertices of Λn.

Theorem 1 (Ref. 1)For any number of qubits n,

1. Any n-qubit quantum state ρ can be decomposed as

ρ =
∑
α∈Vn

pρ(α)Aα,

with pρ(α) ≥ 0 for all α ∈ Vn, and
∑

α pρ(α) = 1.

2. For any Aα, α ∈ Vn, and any Clifford gate g ∈ Cℓn,
gAαg

† is a vertex of Λn. This defines an action of the
Clifford group on Vn as gAαg

† =: Ag·α where g ·α ∈ Vn.
3. For any Aα, α ∈ Vn, and any Pauli projector Πs

a,

Πs
aAαΠ

s
a =

∑
β∈Vn

qα,a(β, s)Aβ,

with qα,a(β, s) ≥ 0 ∀β, s, and
∑

β,s qα,a(β, s) = 1.

This theorem describes a hidden variable model (HVM) for
QCM in which (1) states are represented by probability dis-
tributions pρ over Vn, (2) Clifford gates and Pauli measure-
ments are represented by stochastic maps g · α and qα,a.

Λ simulation method for QCM
A classical simulation algorithm for QCM based on the
Λ polytope model is given below.

1: sample α ∈ Vn according to pρ : Vn → R≥0

2: propagate α through the circuit
3: while the end of the circuit has not been reached do
4: if a Clifford gate g ∈ Cℓn is encountered then
5: update the phase space point according to α ↣ g ·α
6: if a Pauli measurement a ∈ Z2n

2 is encountered then
7: sample (β, s) ∈ Vn × Z2 according to qα,a
8: return s ∈ Z2 as the outcome of the measurement
9: update the phase space point according to α ↣ β

This algorithm returns samples from the distribution of mea-
surement outcomes for the quantum circuit being simulated
which agree with the predictions of quantum theory.

Main result
Naively, the number of bits required to specify a phase space
point α ∈ Vn in the simulation of a quantum computation is
log2(|Vn|). However, this can be reduced using the following
simple insight: in the QCM model, for any fixed value n,
all quantum computations start in the same magic state
|M⟩⊗n. Thus, the question of interest for classical simulation
of QCM using Λ polytopes is not “What is the size of the
phase space Vn?”, but rather “What is the size of the region
of Vn that can be reached from the initial state |M⟩⊗n?”.

In fact, for universal quantum computation, it suffices to
consider adaptive sequences of commuting Pauli measure-
ments of length n acting on a fixed magic state |M⟩⊗n [2].
For this restricted (but still universal) model of QCM, we
have the following result.

Theorem 2 (Ref. 4, Main result)Any quantum compu-
tation consisting of a sequence of n independent, pair-
wise commuting Pauli measurements on a fixed magic
state |M⟩⊗n can be simulated using a memory of 2n2+3n
bits to specify the phase space points reached.

Proof sketch. Since Λn lives in Herm1

(
C2n

)
, a space of

dimension 4n − 1, by Carathéodory’s theorem there exist
choices for pρ, and for qα,a(−, s) for each s ∈ Z2, such that
|supp(pρ)| ≤ 4n and |supp(qα,a(−, s))| ≤ 4n. To start we fix
a canonical choice for the distributions pρ and qα,a satisfying
these properties. Then specifying a sample from pρ requires
no more than log2(4

n) = 2n bits.
There are 4n − 1 nontrivial n-qubit Pauli measurements,
therefore, specifying each measurement requires no more
than 2n bits. For the tth measurement at, the distribution
qαt−1,at is uniquely specified by the sampling history consist-
ing of states α0, α1, . . . , αt−1, measurements a1, a2, . . . , at−1,
and measurement outcomes s1, s2, . . . , st−1. Once the distri-
bution is fixed, with the canonical choice above, specifying a
sample from this distribution requires no more than 2n + 1
bits (1 bit for st and 2n bits for αt).
Since the length of the measurement sequence is no more
than n, the number of classical bits required to specify the
complete sampling history is no more than

2n︸︷︷︸
α0

+

n∑
t=1

[
2n︸︷︷︸
at

+ 1︸︷︷︸
st

+ 2n︸︷︷︸
αt

]
= 4n2 + 3n.

With some slightly more careful accounting, this bound can
be improved to the one stated. □.

For a QCM computation on state ρ, and the corresponding
simulation based on the Λ polytopes, the memory require-
ments are summarized by the following diagram:

ρ
a1−−−→ s1

a2−−−→ s2
a3−−−→ s3 · · ·

pρ
qα0,a1−−→ (α1, s1)

aα1,a2−−→ (α2, s2)
qα2,a3−−→ (α3, s3) · · ·

α0
a1−−−→ (α1, s1)

a2−−−→ (α2, s2)
a3−−−→ (α3, s3) · · ·

2n +2n +2n + 1 +2n +2n + 1 +2n 2n + 1 · · ·

If we admit arbitrarily long sequences of (potentially non-
commuting) Pauli measurements and Clifford gates, we find
that the memory requirement merely doubles (see Corol-
lary 1 of Ref. 4).

References
[1 ] M Zurel, C Okay, R Raussendorf. Phys Rev Lett 125 260404 (2020)

[2 ] F Peres, E Galvão. arXiv:2203.01789 (2022)

[3 ] JA Wheeler. “Information, Physics, Quantum: The Search for Links” (1989)

[4 ] M Zurel, C Okay, R Raussendorf. arXiv:2305.17287 (2023)

Illustration of the simulation method

(a) (b)
A QCM computation (a), and its simulation based on Λ
polytopes (b). (a) QCM consists of preparing a quantum
register in a magic state |M⟩⊗n, followed by a sequence of
Pauli measurements. This requires a device Prep to deliver
the magic states to the quantum register QR, and a classical
register CR to store the previous measurement record s, a
classical side computation to identify the label a(t) of the
Pauli observable measured in step t, and a measurement
device M to perform the measurements and to output the
corresponding results s(t). (b) The overall structure of the
classical simulation is the same. Prep is replaced by a first
sampler Σ that samples from the phase space distribution
of the initial state |M⟩⊗n. There are two classical registers,
CR1 and CR2. The former stores the phase space samples
b(t), and the latter the prior measurement record, as in (a).
The measurement device M is replaced by a second sampler
Σ′ that takes as input a phase space point b(t) and a Pauli
label a(t), and outputs a new phase space point b(t + 1) as
well as a measurement outcome s(t).

“It from bit”
In an article of 1989 [3], John Archibald Wheeler argued
that quantum physics required a new perspective on reality
based on information theoretic concepts. He wrote:

No element in the description of physics shows itself as
closer to primordial than the elementary quantum phe-
nomenon, that is, the elementary device-intermediated
act of posing a yes-no physical question and eliciting
an answer or, in brief, the elementary act of observer-
participancy. Otherwise stated, every physical quantity,
every it, derives its ultimate significance from bits, bi-
nary yes-or-no indications, a conclusion we epitomize in
the phrase, it from bit.

A prototypical realization of this view has been provided in
the description of QCM through the Λ polytopes. The “It”
in this case is universal quantum computation, and hence
all non-relativistic quantum mechanics in finite-dimensional
Hilbert spaces. The “Bits” represent the binary outcomes of
Pauli measurements and the labels of the vertices of the Λ
polytopes.
A crucial feature of the Λ polytope model is that the quan-
tum state |Ψ(t)⟩ of the system is replaced by a bit string
b(t) of bounded length. This description of the system’s
state does not invoke any approximation, b(t) is a valid
and accurate representation of the quantum system, and
the distributions of measurement outcomes sampled from
are the exact quantum-mechanical ones. The data repre-
senting the system is genuinely discrete, thus, we regard the
Λ polytope model as a realization of Wheeler’s proposal.
It should be noted that, in the end, what needs to be re-
produced is the quantum mechanical prediction for the joint
distribution of measurement outcomes. For it, the statistical
distribution of the bit strings {b(t), ∀t} matters, not indi-
vidual values b(t). However, this is the same for the quantum
mechanical states |Ψ(t)⟩. They too are conditioned on prior
measurement outcomes, hence probabilistic.


