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Abstract: A web of cohomological facts relates quantum error correction, measurement-based quantum computation, symmetry protected topological order and contextuality (see figure below).
Here we extend this web to quantum computation with magic states [5]. In this computational scheme, the negativity of certain quasiprobability functions is an indicator for quantumness [3,4].
However, when constructing quasiprobability functions to which this statement applies, a marked difference arises between the cases of even and odd local Hilbert space dimension. At a
technical level, establishing negativity as an indicator of quantumness in quantum computation with magic states relies on two properties of the Wigner function: their covariance with respect
to the Clifford group and positive representation of Pauli measurements. In odd dimension, Gross’ Wigner function—an adaptation of the original Wigner function to odd-finite-dimensional
Hilbert spaces—possesses these properties. In even dimension, Gross’ Wigner function doesn’t exist. Here we discuss the broader class of Wigner functions that, like Gross’, are obtained from
operator bases. We find that such Clifford-covariant Wigner functions do not exist in any even dimension, and furthermore, Pauli measurements cannot be positively represented by them in
any even dimension whenever the number of qudits is n ≥ 2. We establish that the obstructions to the existence of such Wigner functions are cohomological.

Magic state quantum computation (QCM)
QCM is a universal model of quantum computation in which:
(i) The allowed operations are restricted to stabilizer oper-

ations (Clifford gates and Pauli measurements). These
operations alone are not universal for quantum computa-
tion and can be efficiently simulated classically [1].

(ii) Universality is restored by additional nonstabilizer quan-
tum states at the input of the circuit [2]. Thus, the com-
putational power resides with the magic states.

Definitions
For qudits of dimension d, the Pauli operators are

X =
∑
j∈Zd

|j + 1 mod d⟩ ⟨j| , Z =
∑
j∈Zd

ωj |j⟩ ⟨j|

where ω = e2πi/d. Up to overall phases, the n-qudit Pauli
operators are

Ta = µγ(a)
n⊗

k=1

Zaz[k]Xax[k], ∀a = (az, ax) ∈ Z2n
d (1)

where µ = ω (µ =
√
ω) if d is odd (even). The symplectic

form on Z2n
d tracks the commutator of the Pauli operators

as [Ta, Tb] := TaTbT
−1
a T−1

b = ω[a,b], ∀a, b ∈ Z2n
d . We define

a function β that tracks how commuting Pauli operators
compose through

TaTb = ωβ(a,b)Ta+b, ∀a, b ∈ Z2n
d s.t. [a, b] = 0. (2)

The Clifford group is the normalizer of the Pauli group in
the unitary group: Cℓ = N (P)/U(1). The Clifford group
acts on the Pauli operators as

g(Ta) = ωΦ̃g(a)TSga, ∀g ∈ Cℓ,∀a ∈ Z2n
d (3)

where Sg is a symplectic map on Z2n
d .

Properties of discrete Wigner functions
We look for Wigner functions satisfying the properties:

OB (Operator basis): ∀Y a Wigner function WY satisfies

Y =
∑
v∈V

WY (v)Av,

where {Av}v∈V form an operator basis with phase space
V = Zn

d × Zn
d.

SW1 (Reality): WY †(u) = (WY (u))
∗, ∀u ∈ V.

SW2 (Standardization):
∑

u∈V WY (u) = Tr(Y ).

SW3 (Pauli covariance): WTa(Y )(u + a) = WY (u), ∀u, a.

SW4 (Traciality):
∑

u∈V WY1
(u)ΘY2

(u) = Tr(Y1Y2).

Wigner functions for QCM
Wigner functions that are useful for describing QCM also
satisfy the following properties:

Clifford covariance: A Wigner function is Clifford covari-
ant if

Wg(Y )(Sgu + ag) = WY (u) ∀g ∈ Cℓ
where Sg is a symplectic map on Z2n

d .

Positive representation of Pauli measurement: A
Wigner function positively represents Pauli measurement if

(i) For any Pauli projector Πa,s, the Born rule takes the form

Tr(Πa,sρ) =
∑
v∈V

ΘΠa,s
(v)Wρ(v)

with 0 ≤ ΘΠa,s
(v) ≤ 1, ∀v, a, s

(ii) For all Pauli projectors Πa,s,

Wρ ≥ 0 =⇒ WΠa,sρΠa,s
≥ 0

Our goal is to determine when a Wigner function satisfying
(OB),(SW1)–(SW4) exists which is also Clifford covariant
and positively represents Pauli measurement.

Role of cohomology in quantum computation

Cohomology
Let C∗ = (C0, C1, C2, C3) denote the chain complex where
Ck is the free Zd-module with basis [v1|v2| · · · |vk] such that
vj ∈ E and [vi, vj] = 0. The boundary map ∂ is given by

∂[v1|v2| · · · |vk] =[v2| · · · |vk] + (−1)k[v1| · · · |vk−1]

+

(
k−1∑
i=1

(−1)i[v1| · · · |vi + vi+1| · · · |vk]

)
C∗ is the cochain complex with k-cochains Ck Zd-module
maps f : Ck → Zd, with coboundary map df (−) = f (∂−).

β is a 2-cochain. It follows from associativity (TaTb)Tc =
Ta(TbTc) that dβ(a, b) := β(b, c) − β(a + b, c) + β(a, b +
c)− β(a, b) = 0. Therefore β is a 2-cocycle.

For describing the Clifford group we define a (co)chain com-
plex C̃ as before except without the commutativity con-
straint. Cp(Cℓ, C̃q) is a bicomplex with two coboundaries:

Cp(Cℓ, C̃q)
dh−−→ Cp+1(Cℓ, C̃q)

dv ↓
Cp(Cℓ, C̃q+1)

• dv is induced by the boundary map ∂ on C̃

• dh is a coboundary in group cohomology

Φ̃ is a 1-cochain in Cp(Cℓ, C̃q). Again from associativity,
(gh)(Ta) = g(h(Ta)), we have (d

hΦ)g,h := Φ̃h(a)− Φ̃gh(a) +
Φ̃g(Sha) and so Φ̃ is a 1-cocycle.

Motivation for cohomological arguments
Before defining a Wigner function an arbitrary phase func-
tion γ must be chosen for the Pauli operators in Eq. (1).
When the phase convention is changed by

γ(a) −→

{
γ(a) + ν(a) if d is odd

γ(a) + 2ν(a) if d is even,

the resulting change in β (see Eq. (2)) is

β(a, b) −→β(a, b) + ν(a) + ν(b)− ν(a + b)

=β(a, b) + dν(a, b).

where dν is the coboundary of ν. The equivalence class
[β] := {β + dν | ν ∈ C1} is an element of a cohomology
group H2(C,Zd)
The resulting change in Φ̃g (see Eq. (3)) is

Φ̃g(a) −→Φ̃g(a) + ν(a)− ν(Sga)

=Φ̃g(a)− (dhν)g(a)

where dhν is a coboundary in group cohomology. The equiv-
alence class [Φ̃] := {Φ̃ + dhν | ν ∈ C̃1} is an element of the
cohomology group H1(Cℓ, C̃1).

Physical properties should not depend on the phase conven-
tion so properties should depend on β and Φ only through
their cohomology classes. It turns out, existence of a Clif-
ford covariant Wigner function hinges on [Φ̃] (see Theorem
1) and existence of a Wigner function that positively repre-
sents Pauli measurement hinges on [β] (see Theorem 2).

Clifford covariance
Let B̃1 denote the image of the boundary map ∂ : C̃2 → C̃1,
and Ucov the set of Zd-module maps B̃1 → Zd. We choose
a set-theoretic section θ : Q → Cℓ of the quotient map Π :
Cℓ → Q where Q = Cℓ/P and P ⊂ Cℓ is the Pauli group.
Then Φcov ∈ C1(Q,Ucov) is defined to be the composite

Φcov : Q
θ−→ Cℓ Φ̃−→ C1 dv−→ Ucov.

Then we have the following result:

Theorem 1For any number n of qudits of any dimension
d, a Clifford covariant Wigner function satisfying (OB)
exists if and only if [Φcov] = 0 ∈ H1(Q,Ucov).

Implications for odd-dimensional qudits

Lemma 1For odd-dimensional qudits, [Φcov] = 0.

Corollary 1For any number of qudits n of any odd di-
mension d, a Clifford covariant Wigner function satis-
fying (OB) exists.

Implications for even-dimensional qudits

Lemma 2For even-dimensional qudits, [Φcov] ̸= 0.

Corollary 2For any number of qudits n of any even di-
mension d, a Clifford covariant Wigner function satis-
fying (OB) does not exists.

See Ref. [5] for proofs.

Positive representation of Pauli measurement

Theorem 2For any number n of qudits of any dimension
d, a Wigner function satisfying (OB), (SW1)–(SW4)
that positively represents Pauli measurements exists if
and only if [β] = 0 ∈ H2(C,Zd).

Odd-dimensional qudits

Lemma 3For odd-dimensional qudits, [β] = 0.

Proof. Choose γ = −⟨az|ax⟩ · 2−1

Corollary 3For any number of qudits of any odd dimen-
sion, a Wigner function that positively represents Pauli
measurements exists.

Even-dimensional qudits

Lemma 4For even-dimensional qudits, [β] ̸= 0.

Proof. A generalization of the Mermin square. Define X̃ =

Xd/2 and Ỹ =
√
ω
d/2

Xd/2Z. Then the generalized Mermin
square is
Ta = Z−1 ⊗ I × Tb = I ⊗ Z × T−1

a+b = Z ⊗ Z−1 = I ⇒ β(a, b) = 0

× × ×
Tc = I ⊗ X̃ × Td = X̃−1 ⊗ I × T−1

c+d = X̃ ⊗ X̃−1 = I ⇒ β(c, d) = 0

× × ×
T−1
a+c = Z ⊗ X̃−1 × T−1

b+d = X̃ ⊗ Z−1 × Ta+b+c+d = Ỹ −1 ⊗ Ỹ = I ⇒ β(a + c, b + d) = 0

= = =

I I −I⇒ ⇒ ⇒

β(a, c) = 0 β(b, d) = 0 β(a + b, c + d) = d/2

Corollary 4For any number of qudits of any even dimen-
sion, a Wigner function that positively represents Pauli
measurements does not exist.

See Ref. [5] for proofs.
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