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Abstract: It was recently shown that a hidden variable model can be constructed for universal quantum computation with magic states on qubits. Here we show that this
result can be extended, and a hidden variable model can be defined for quantum computation with magic states on qudits with any Hilbert space dimension. This model
leads to a classical simulation algorithm for universal quantum computation. Details are available at arXiv:2110.12318 [6]. ∗mzurel@phas.ubc.ca

Introduction
A key question at the heart of quantum computation remains with-
out a satisfying answer: what is the essential quantum resource
that provides the computational speedup of quantum computation
over classical computation? The is the question we consider here.

One fruitful way to approach this question comes from quantum com-
putation with magic states [1].

Quantum computation with magic states (QCM)

QCM is a universal model of quantum computation in which:

• The allowed operations are restricted to Clifford gates and Pauli
measurements. These operations are not universal for quantum
computation and can be efficiently simulated classically.

•Universality is restored by additional nonstabilizer quantum states
at the input of the circuit. Thus, the computational power resides
with the magic states, e.g. the |H⟩ state below.

This model allows us to refine the question posed above. Instead
of asking broadly which nonclassical resources are required for a
quantum computational speedup?, we can focus on the quantum
states and ask which states could provide a speedup in QCM?

A partial answer to this question is provided by the study of
quasiprobability representations like the Wigner function.

Quasiprobability representations

Veitch et al. [2] showed that a necessary condition for a quantum
computational speedup in QCM on odd-prime-dimensional qudits is
that the discrete Wigner function of the input state of the quan-
tum circuit must take negative values. The amount of negativity in
the discrete Wigner function quantifies the cost of classical simula-
tion of a quantum computation with simulation being efficient if the
Wigner function is nonnegative everywhere [3]. Since nonnegativity
of the discrete Wigner function also implies the existence of a classical
(noncontextual) hidden variable model (HVM) describing the compu-
tation, this proves that two traditional notions of nonclassicality for
quantum systems—Wigner negativity and failure of a classical HVM
description—herald a quantum computational advantage over classi-
cal computation.

Similar necessary conditions for quantum advantage in QCM have
been proven based on other quasiprobability representations. In all
cases, negativity is required in the representation of states or opera-
tions in order to describe universal quantum computation.

Our contributions
Recently a hidden variable model was defined which represents all
quantum states, operations, and measurements relevant for QCM on
qubits using only classical (nonnegative) probabilities [5]. This model
is structurally similar to previously defined quasiprobability represen-
tations for quantum computation and leads to a classical simulation
method for universal quantum computation based on sampling.

We show that this result can be significantly extended in that a non-
negative hidden variable model can be constructed for quantum com-
putation with magic states on any number of qudits of any dimension.
This model also spawns a classical simulation algorithm for quantum
computation with magic states.

Significance of results

• In previously defined quasiprobability representations for QCM,
negativity was shown to be a necessary condition for a quantum
computational speedup by defining an efficient classical simulation
algorithm for the quantum computation that applied whenever the
input state had a nonnegative representation.

• In our model, every state has a nonnegative probability represen-
tation so the classical simulation algorithm applies to QCM on any
input state (including magic states).

• This classical simulation algorithm is not efficient in general. There
are however some important cases in which it is efficient. E.g. the
phase space point operators of Ref. [4] and the phase point oper-
ators of the odd-dimensional discrete Wigner function are special
cases of the hidden variables of our model. When the support of the
probability representation of the input state is restricted to these
variables, the simulation algorithm is efficient.

• Characterizing more of the hidden variables of the model could ex-
pand the scope of efficient simulability of QCM.

•We also believe that the Λ polytopes could be of independent in-
terest potentially with other applications.

Definitions

•Denote the n-qudit Pauli operators by

Ta = eiϕ(a)
n⊗

k=1

Zaz[k]Xax[k], ∀a = (az, ax) ∈ Zn
d × Zn

d =: E,

where the local Pauli operators are

X =
∑
j∈Zd

|j + 1⟩ ⟨j| , Z =
∑
j∈Zd

ωj |j⟩ ⟨j|

with ω = exp(2πi/d).

• For any set of pair-wise commuting Pauli observables J ⊂ E, denote
the projector onto the eigenspace of the observables in J correspond-
ing to eigenvalues {ωr(a) | a ∈ J} by

Πr
J :=

1

|J |
∑
a∈J

ω−r(a)Ta.

• The Clifford group, denoted Cℓ, is the normalizer of the Pauli oper-
ators in the unitary group up to overall phases.

•Denote by Herm1(d
n) the set of Hermitian, unit trace operators on

n-qudit Hilbert space H = (Cd)⊗n.

• Let S denote the set of projectors onto pure n-qudit stabilizer states.

Main result
Define

Λ := {X ∈ Herm1(d
n) | Tr(ΠX) ≥ 0 ∀Π ∈ S}.

Λ is a closed, bounded polytope in Herm1(d
n) with a finite number

of vertices. Denote the vertices of Λ by {Aα |α ∈ V}. We have the
following theorem:

Theorem. For any number of qudits n with any dimension d, we
have a finite set of Hermitian operators {Aα | α ∈ V} such that

(i) Each n-qudit quantum state ρ can be represented by a probability
function pρ : V −→ R≥0,

ρ =
∑
α∈V

pρ(α)Aα. (1)

(ii) For any α ∈ V and any Clifford gate g ∈ Cℓ, it holds that

g(Aα) = Ag·α with g · α ∈ V . (2)

(iii) For any α ∈ V and any Pauli measurement projector Πr
J ,

Πr
JAαΠ

r
J =

∑
β∈V

qα,J(β, r)Aβ, (3)

where for all α, J , the qα,J are probability functions.

(iv) The probability of obtaining outcomes r : J −→ Zd for measure-
ments J ⊂ E on the state ρ is given by

Tr
(
Πr
Jρ

)
=

∑
α∈V

pρ(α)QJ(r|α), (4)

where QJ(r|α) is given by

QJ(r|α) :=
∑
β∈V

qα,J(β, r). (5)

For any α and J , QJ(r|α) is a probability distribution over the set
of value assignments for J .

This theorem defines a hidden variable model that represents all com-
ponents of quantum computation with magic states—Clifford gates
(ii), Pauli measurements (iii-iv), and magic states (i)—by a family of
probability distributions defined in eqs. (1)–(5).

Classical simulation of universal

quantum computation
The hidden variable model defined above can be used to simulate
quantum computation with magic states.
Algorithm sketch.

1. Start with a decomposition of the input state ρ of the form Eq. (1).
Sample from pρ(α) to obtain an initial phase space point α.

2. For each Clifford gate g in the quantum circuit, update the phase
space point α ↢ g · α.

3. For each Pauli measurement a ∈ E, sample from the distribution
qα,⟨a⟩ to obtain r(a) ∈ Zd and β ∈ V . Return r(a) as the outcome
of the measurement and update the phase space point α ↢ β.

One qubit example

The state space Λ is a cube
with eight vertices correspond-
ing to the phase point operators
A±±± = 1

2[I ± X ± Y ± Z].
The physical one-qubit states lie
on or in the Bloch sphere which
is inscribed in Λ and touches the
boundary of Λ at the 6 stabilizer
states. Any one-qubit state can
be expressed as a convex combi-
nation of the vertices of the cube
as in Eq. (1).

Under a Clifford gate, vertices of
Λ map deterministically to other
vertices. For example, the action
of a Hadamard gate H on the
vertices is shown here. Each red
arrow represents a deterministic
transition.

Under a Pauli measurement, a ∈
E, outcome r(a) is returned with
probability Qa(r|α) and the up-
date of the vertices is probabilis-
tic. For example, a Pauli Z mea-
surement is shown here. Each
red arrow represents a transition
probability of 0.5.

Structure of the polytope Λ
The polytope Λ can only be easily visualized in the simplest case of
one qubit above, but for any n, d the result is similar. In general,

• The dimension of the ambient space is d2n − 1.

• All states are contained in Λ, so they can be described as a convex
combination of the vertices of Λ as in eq. (1).

• Update under Clifford gates is deterministic, eq. (2).

• Update under Pauli measurements is probabilistic, eqs. (3)–(5).

Some facts are known about the polytopes, e.g.:

• For qubits, the phase point operators of the form

A
γ
Ω =

1

2n

∑
b∈Ω

ω−γ(b)Tb

defined in Ref. [4] are vertices of Λ. For odd-dimensional qudits,
the phase space point operators of the discrete Wigner function of
the form

Au =
1

dn

∑
v∈E

ω[u,v]Tv

are vertices of Λ.

• For qubits, for any vertex Aα, any projector onto a stabilizer state
Π, and any Clifford gate g,

g(Aα ⊗ Π)

is a vertex of Λ. For qudits, g(Aα⊗Π) is in Λ but is not necessarily
a vertex.
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