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Abstract: We show that every quantum computation can be described by a probabilistic update of a probability distribution on a finite phase space. Negativity in a
quasiprobability function is not required in states or operations. Our result is consistent with Gleason’s theorem and the Pusey-Barrett-Rudolph theorem. This result
was recently published in Phys. Rev. Lett. [6]

Introduction
It is often pointed out that the fundamental objects in quantum me-
chanics are amplitudes, not probabilities. This fact notwithstanding,
here we construct a description of universal quantum computation—
and hence of all quantum mechanics in finite-dimensional Hilbert
spaces—in terms of probabilistic update of a probability distribu-
tion. In this formulation, quantum algorithms look structurally akin
to classical diffusion problems.
While this seems implausible, there exists a well-known special in-
stance of it: quantum computation with magic states (QCM) on a
single qubit. Compounding two standard one-qubit Wigner func-
tions, a hidden variable model can be constructed in which every one-
qubit quantum state is positively represented [2]. This representation
is furthermore covariant under all one-qubit Clifford unitaries and
positivity-preserving under all one-qubit Pauli measurements. The
update under such operations preserves the probabilistic character of
the model, and hence QCM on one qubit can be classically simulated
by probabilistic update of a probability function on eight elements.
The prevailing view on the one-qubit example is that it is an ex-
ception, and for multiple qubits negativity will inevitably creep into
any quasiprobability function of any computationally useful quantum
state, rendering classical simulation inefficient. This hypothesis is in-
formed by the study of Wigner functions in finite-dimensional state
spaces, which establishes Wigner function negativity as a necessary
computational resource, i.e., there can be no quantum speedup with-
out negativity. A quantum optics notion of quantumness—negativity
of Wigner functions—and a computational notion—hardness of clas-
sical simulation—thus align.
The viewpoint just summarized requires correction. As we show, the
one-qubit case is not an exception; rather it is an example illustrat-
ing the general case. Every quantum state on any number of qubits
can be represented by a probability function, and the update of this
probability function under Pauli measurement is also probabilistic.
We emphasize that both the states and operations are represented
positively, not just one or the other.
We apply this to quantum computation with magic states, showing
that universal quantum computation can be classically simulated by
the probabilistic update of a probability distribution.

Quantum computation with magic

states (QCM)
In quantum computation by injection of magic states [1],

• The unitaries, measurements and state preparations are non-
universal, and are considered “free”. The free unitaries are chosen
from a subgroup of the Clifford group, and the free measurements
are of Pauli observables.

• The computational power resides with the magic states, which can
be injected into the computation.

Setting and definitions
We denote the n-qubit Pauli operators by

Ta = iφ(a)
n⊗
k=1

XaX [k]ZaZ[k], ∀a = (aX , aZ) ∈ Zn2 × Zn2 =: En.

The projectors onto the eigenspaces of Pauli observables are

Πa,s :=
I + (−1)sTa

2
, ∀a ∈ En, s ∈ Z2.

The state space Λn of our model is defined as follows. Denote by
Herm1(2n) the set of Hermitian operators on n-qubit Hilbert space
H = C2n with the property that Tr(X) = 1 for all X ∈ Herm1(2n),
and by Sn the set of all n-qubit pure stabilizer states. Then we define
the polytope Λn as

Λn := {X ∈ Herm1(2n)|Tr(|σ〉 〈σ|X) ≥ 0,∀ |σ〉 ∈ Sn}.

Denote by An the set of vertices of Λn, and the vertices by Aα ∈ An.
These are our generalized phase point operators, and the correspond-
ing index set {α} =: Vn is the generalized phase space.

Main result
Theorem. For all numbers of qubits n ∈ N, (i) each n-qubit quan-
tum state ρ can be represented by a probability function pρ : Vn −→
R≥0,

ρ =
∑
α∈Vn

pρ(α)Aα. (1)

(ii) For any Clifford unitary U , it holds that

UAαU
† = AU ·α ∈ An.

(iii) For the state update under Pauli measurements it holds that

Πa,sAαΠa,s =
∑
β∈Vn

qα,a(β, s)Aβ. (2)

For all a ∈ En, α ∈ Vn, the qα,a : Vn× Z2 −→ R≥0 are probability
functions,
(iv) Denote by Pρ,a(s) the probability of obtaining outcome s for a
measurement of Ta on the state ρ. Then, the Born rule Pρ,a(s) =
Tr(Πa,sρ) takes the form

Tr(Πa,sρ) =
∑
α∈Vn

pρ(α)Qa(s|α), (3)

where Qa(s|α) is given by

Qa(s|α) :=
∑
β∈Vn

qα,a(β, s). (4)

Hence 0 ≤ Qa(s|α) ≤ 1, for all a, s, α.

Classical simulation of universal

quantum computation
The hidden variable model defined above can be used to simulate
quantum computation with magic states.
Algorithm sketch.

1. Start with a decomposition of the input state ρ of the form Eq. (1).
Sample from pρ(α) to obtain an initial phase space point α.

2. For each Clifford unitary U in the quantum circuit, update the
phase space point α� U · α.

3. For each Pauli measurement a ∈ En, sample from the distribution
qα,a to obtain s ∈ Z2 and β ∈ Vn. Return s as the outcome of the
measurement and update the phase space point α� β.

Discussion
Negativity in quasiprobability representations has been identified as
a cause for slowing down the classical simulation of quantum systems
by sampling. A general result has been obtained in Ref. [4] stating
that a quantum system described by a quasiprobality function W
with negativityM = ||W ||1 can be simulated by sampling at a cost
that scales like M2. There are simulation schemes for QCM on qu-
dits [3] and on qubits [5], where negativity is the only source for the
computational hardness of classical simulation. Negativity is there-
fore singled out as a precondition for quantum speedup. We do not
contradict these results but now find that they are an artifact of the
particular quasiprobability functions chosen. Our result lies at the op-
posite end of the spectrum. There is no negativity but, presumably,
still computational hardness.
For a more in depth discussion, including the relation of this model
to the Pusey-Barrett-Rudolph theorem and Gleason’s theorem, and
a discussion of contextuality, see Ref. [6].

References

[1] S. Bravyi and A. Kitaev, Phys. Rev. A 71, 022316 (2005).

[2] J.J. Wallman and S.D. Bartlett, Phys. Rev. A 85, 062121 (2012).

[3] V. Veitch, C. Ferrie, D. Gross, and J. Emerson, New J. Phys. 15
039502 (2012)

[4] H. Pashayan. J.J. Wallman and S.D. Bartlett, Phys. Rev. Lett.
115 070501 (2015).

[5] Robert Raussendorf, Juani Bermejo-Vega, Emily Tyhurst, Cihan
Okay, and Michael Zurel, Phys. Rev. A 101 012350 (2020).

[6] Michael Zurel, Cihan Okay, and Robert Raussendorf, Phys. Rev.
Lett. 125 260404 (2020).

One-qubit example

The state space Λ1 is a cube
with eight vertices correspond-
ing to the phase point opera-
tors Aα = [I + (−1)sxX +
(−1)syY +(−1)szZ]/2, with α =
(sx, sy, sz) ∈ Z3

2. The physical
one-qubit states lie on or in the
Bloch sphere that is contained in
Λ1. Any one-qubit state can be
expressed as a convex combina-
tion of the vertices of the cube as
in Eq. (1).

Under conjugation by a Clifford
unitary, vertices of Λ1 map de-
terministically to other vertices.
For example, the action of a
Hadamard gate H on the vertices
is shown here. Each red arrow
represents a deterministic transi-
tion.

Under a Pauli measurement, a ∈
E1, outcome s is returned with
probability Qa(s|α) and the up-
date of the vertices is probabilis-
tic. For example, a Pauli Z mea-
surement is shown here. Each
red arrow represents a transition
probability of 0.5.

Structure of the polytope Λ
• In general, the polytope Λn is not a hypercube as in the case of

one qubit. For example, on two qubits, Λ2 is a polytope in a
15-dimensional space with 60 facets and 22320 vertices. A two-
dimensional cross section of Λ2 is shown in the figure below. The
cross section is parametrized by

ρ(x, y) =
1

4
I12 + x(Z1 + Z2) + y(X1X2 + Z1Z2 − Y1Y2).

The four states labelled in the figure are

ρ1 =
1

4
I12 −

1

8
(Z1 + Z2),

ρ2 =
1

4
I12 +

1

4
(X1X2 + Z1Z2 − Y1Y2),

ρ3 =
1

4
I12 −

1

12
(X1X2 + Z1Z2 − Y1Y2),

ρ4 =
1

4
I12 +

1

8
(Z1 + Z2).
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• The phase point operators of the form

A
γ
Ω =

1

2n

∑
b∈Ω

(−1)γ(b)Tb

with Ω ⊂ En and γ : Ω → Z2 a noncontextual value assignment
on Ω first defined in Ref. [5] are vertices of Λn. There are more
vertices of Λn which do not have this form.


