Robert Raussendorf, Juani Bermejo-Vega’, Emily Tyhurst®, Cihan Okay'?, and Michael Zurel'

1: Department of Physics and Astronomy, Uniwversity of British Columbia, Vancouver, Canada,

2: Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, Canada

3: Dahlem Center for Complex Quantum Systems, Freie Universitat Berlin, Berlin, Germany

4: Department of Physics, University of Toronto, Toronto, Canada

Abstract: We propose a method for classical simulation of finite-dimensional quantum systems, based on sampling from a quasiprobability distribution, i.e., a
ceneralized Wigner function. Our construction applies to all finite dimensions, with the most interesting case being that of qubits. For multiple qubits, we find that
quantum computation by Clifford gates and Pauli measurements on magic states can be efficiently classically simulated it the quasiprobability distribution of the magic
states is non-negative. This provides the so far missing qubit counterpart of the corresponding result [V. Veitch et al., New J. Phys. 14, 113011 (2012)| applying only
to odd dimension. Our approach is more general than previous ones based on mixtures of stabilizer states. Namely, all mixtures of stabilizer states can be efficiently
simulated, but for any number of qubits there also exist efliciently simulable states outside the stabilizer polytope. Further, our simulation method extends to negative
quasiprobability distributions, where it provides probability estimation. The simulation cost is then proportional to a robustness measure squared. For all quantum
states, this robustness is smaller than or equal to robustness of magic.

Introduction

How to mark the classical-to-quantum boundary is a question that
dates back almost to the beginning of quantum theory. Ehrenfest’s
theorem provides an early insight, and the Einstein-Podolsky-Rosen
paradox and Schrodinger’s cat are two early puzzles. The advent of
quantum computation added a computational angle: When does it
become hard to simulate a quantum mechanical computing device
on a classical computer? Which quantum mechanical resource do
quantum computers harness for a computational speedup?

One instructive computational model is quantum computation with
magic states (QCM) [1]. In QCM, both “traditional” indicators of
quantumness (developed in the fields of quantum optics and founda-
tions of quantum mechanics) and a computational indicator can be
applied. From quantum optics and foundations, the indicators are
the negativity of a Wigner function [3], and the breakdown of non-
contextual hidden variable models [2]. Computer science is concerned
with the breakdown of efficient classical simulation.

In the particular setting of QCM, an important distinction arises be-
tween the cases of even and odd local Hilbert space dimension d.
If d is odd, then all three of the above indicators for the classical-
to-quantum boundary align [3]. This is a very satisfying situation:
the physicist, the philosopher and the computer scientist can have
compatible notions of what is “quantum”.

In this work, we provide the thus far missing phase space picture for
QCM on multi-qubit systems. Central to our discussion is a new
quasi-probability function defined for all local Hilbert space dimen-
sions d and all numbers of subsystems n. When applied to odd d,
it reproduces the known finite-dimensional adaption of the original
Wigner function; but for even d, in particular d = 2, it is differ-
ent. Then, this quasiprobability function requires a phase space of
increased size. Even in d = 2, the positivity of this quasiprobability
is preserved under all Pauli measurements. This property is crucial
for the efficient classical simulation of QCM on positively represented
states.

QC with magic states (QCM)

In quantum computation by injection of magic states [1],

e The unitaries, measurements and state preparations are non-
universal, and are considered “free”. The free unitaries are chosen
from a subgroup of the Clifford group, and the free measurements
are of Pauli observables.

e The computational power resides with the magic states, which can
be injected into the computation.
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Three requirements

A Wigner function used to describe QCM must satisfy three require-
ments:

(1) Every quantum state p has at least one corresponding Wigner func-
tion W),

(2) For the measurement of every Pauli observable, the respective out-
come probabilities are given by marginals of W.

(3) Under all Pauli measurements, positivity of W is preserved.

Main difficulty with qubits

The main difficulty for establishing a suitable multi-qubit Wigner
function is state-independent contextuality w.r.t. Pauli observables,
as exhibited by Mermin’s square. As a result of this, there is no
multi-qubit Wigner function (a) which is positivity-preserving under
all Pauli measurements, and (b) whose phase point operators form
an operator basis (minimality). We construct a positivity preserving
quasiprobability function which is not minimal.

The Discrete Wigner function

® Wigner function can
go negative

® Marginals must be
non-negative

Wigner function negativity is an indicator of quantumess

The present phase space and Wigner function for n qudits is built
from the n-qudit Pauli operators
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where X [7) = [j + 1 mod d), Z |j) = w’ |5), and w = exp(2mi/d).

The phase space V' consists of pairs (€2, A) where where €2 is a subset
of Pp,and A : @ — {1, w,... ,wd_l} is a function. To satisfy the
above three requirements on W, the admissible sets €2 and functions
A must fulfil consistency conditions:

o () is closed under inference, i.e., if P,Q €  and [P, Q| = 0 then
PQ) € ).

e () admits a noncontextual value assignment.

o)\ : O — {lw,... ,wd_l} is a noncontextual value assignment,

ie. if P,@Q € Q) commute then A\(PQ) = A(P)AQ).
With (€2, \) satisfying these conditions, the phase point operators are

A = d—ln > AMP)P, (1)
Pef)

The Wigner function, W, : V — R, is defined by

p= > Wy A
(2,N) eV

Main Result

Theorem (Efficient classical simulation) If for an initial quantum
state p 1t holds that W, > 0 and furthermore W), can be efliciently
sampled from, then the output distribution of all sequences of Pauli
measurements, possibly interspersed with Clifford gates, on p can be
classically efficiently sampled from.
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Structure of the phase space

In the case of odd dimensional qudits, P, is closed under inference
and noncontextual. The only relevant admissible set is P, and points
in phase space, V = Z; X Zp, are labeled by noncontextual value
assignments A : Py, — Z;. The phase point operators form an opera-
tor basis and the Wigner function is equivalent to the original Wigner
function for odd dimensional qudits [3].

In the multi-qubit phase space the admissible sets {2 are an additional
varying parameter and so the phase point operators do not form an
operator basis, they are overcomplete. A classification of maximal
admissible sets €2 for the case of multiple qubits is fully known [4].
Here we provide an example: the classification for the case of two
rebits. It is illustrated in the figure below.
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Three types of sets €2 are shown for Mermin’s square. (a) union of two
isotropic subspaces intersecting in one element, (b) isotropic subspace,
(¢) triple of anti-commuting elements.

The case of W, <0

If the Wigner function W), of the initial magic state p has negative en-
tries, then the classical simulation of QQCM is no longer eflicient. This
means, negativity is a necessary computational resource for QCM. In
this case, classical simulation is still possible via probability estima-
tion.

The hardness of classical simulation is quantified through a monotone

called phase space robustness R, defined through

R(p) : ] W 3
(p) W‘&%:p!\ 11, (3)

with (A, W) = > ey WaAa.

The computational cost IV required to estimate the output probabil-
ities scales as )
m(pinit)

N ~
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Thus, the robustness JR(piyit) of the initial state pyit is the critical
parameter determining the classical hardness of probability estima-
t1omn.

The figure below shows the robustness of three-qubit states
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as a function of the angle ¢ (the phase space robustness is in red and
the robustness of magic [5] is in blue).
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