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Abstract

An important problem in quantum computation is to characterize the resources

required for a computational speedup over classical computation. Veitch et al. [1]

showed that one necessary condition for a computational speedup in the model

of quantum computation with magic states is that the discrete Wigner function

representing the input state of the quantum circuit must take negative values. The

amount of negativity in the discrete Wigner function quantifies the complexity of

classical simulation of a quantum computation with simulation being efficient if

the Wigner function is nonnegative everywhere. In this sense, negativity of the

Wigner quasiprobability representation serves as an indicator of quantumness from

a computational perspective. However, this result only holds for systems of qudits

where the local Hilbert space dimension is odd.

The first main result discussed in this thesis relates to a discrete Wigner func-

tion suitable for describing quantum computation with magic states defined for

any local Hilbert space dimension [2]. When the local Hilbert space dimension

is odd it subsumes the standard discrete Wigner function. When the local Hilbert

space dimension is even, as a result of state-independent proofs of contextuality

among multiqubit (or multi-even-dimensional-qudit) Pauli observables, the phase

space over which the Wigner function is defined becomes much larger. However,

for systems of qubits, the properties required for simulation of quantum compu-

tation with magic states remain. This simulation method effectively extends the

result described above for odd-dimensional qudits to qubits. Although in the even-

dimensional case the phase space is much larger, points in multiqubit phase space

can be characterized and classified and some structure can be imparted on the phase

space.
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The second main result discussed here is a hidden variable model for quantum

computation with magic states on qubits [3]. This model is similar in structure to

quasiprobability representations like the discrete Wigner function, but unlike those

representations the model is capable of representing all elements of any quantum

computation—states, operations, and measurements—using only classical proba-

bilities. No negativity is required. This calls into question the role of negativity

in quasiprobability representations as an indicator of quantumness for models of

quantum computation.
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Lay Summary

The unintuitive nature of quantum theory has long puzzled laypeople and scientist

working in the field alike. Quantum phenomena like entanglement and contextu-

ality seem to place quantum theory well beyond the grasp of classical intuition.

A commonly asked question among quantum theorists is: to what extent can we

assign a classical explanation to the predictions of quantum mechanics? While this

is an interesting question in and of itself, the discovery of quantum computation

provides it with a potentially useful application. Often, the failure of classical ex-

planations heralds an advantage of quantum computing over classical computing.

In this sense, characterizing the features of quantum mechanics that evade classi-

cal explanation is an equivalent program to characterizing super-classical models

of quantum computation. This dual characterization problem is explored in this

thesis for a particular model of quantum computation.
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Chapter 1

Introduction

It is widely believed that quantum computers have the potential to solve some

computational problems that are intractable for classical computers. Originally

conceived in the early 1980’s as a way of simulating systems which cannot be

feasibly simulated classically [8, 9], quantum computation has seen an explosion of

interest in recent years, in part fuelled by the discovery of quantum algorithms with

broader interest beyond simulating physical systems, for example, Shor’s algorithm

for factoring integers [10] and Grover’s algorithm for unstructured search [11].

Both of these algorithms are more efficient than any known classical algorithm for

their respective tasks.

Although quantum computation as a field has been around for decades, a key

question at the heart of quantum computation remains without a satisfying answer.

Namely, what are the essential quantum resources that provide the speedup for

quantum computation over classical computation? Characterizing these resources

is an important problem with practical quantum computation likely around the cor-

ner as recent hardware demonstrations by companies like Google, IBM, D-Wave,

and IonQ have shown [12–15]. Understanding the essential resources of quantum

computation could drive practical research in hardware and architecture design.

Below we review some properties of quantum mechanics that have been pro-

posed as quintessential resources for quantum computation. At the same time, we

use these candidates to illustrate some aspects of the question posed above and to

get a better understanding of its purpose.
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An obvious candidate that comes to mind for the source of the advantage for

quantum computers is the exponential blowup of the dimension of the state space

with the number of qubits. Specifying an n-qubit quantum state requires specifying

O(2n) complex amplitudes (Hilbert space dimension 2n). Tracking unitary opera-

tions generally requires matrix multiplication in a 2n-dimensional space and calcu-

lating probabilities for measurement outcomes involves computing inner products

in this space. These tasks have algorithms which run in polynomial time with re-

spect to the dimension but the dimension of the Hilbert space grows exponentially

with the number n of qubits.

Let’s pause here and see what we’ve just done. We have proposed an algorithm

for the classical simulation of quantum mechanics, the most obvious one. We learn

from it that the largeness of Hilbert space is a necessary precondition for a quantum

computational speedup. That is, if the Hilbert space dimension is small, then our

simulation algorithm is efficient. But is largeness of Hilbert space dimension also

sufficient for a quantum speedup? Before answering this question, we emphasize

the distinction. A necessary property is one that precludes a quantum speedup if

absent, a sufficient property is one that enables speedup if present.

The ultimate goal of the “quantum resource” research programme is to identify

a quantum property that is both necessary and sufficient for quantum speedup. This

has to date not been achieved.

So then, how does largeness of Hilbert space dimension fail to be a sufficient

condition for quantum speedup? For example, consider a quantum computer with

access to n qubits but which can only prepare product states and can only imple-

ment local unitary operations and perform local measurements. In this restricted

setting, specifying a state requires only O(2n) amplitudes (two amplitudes for each

qubit) and the dynamics (unitary operations and measurements) can be tracked for

each qubit separately. Therefore, this quantum computer could be simulated effi-

ciently on a classical computer, and thus, with local states, operations, and mea-

surements only, no quantum computational advantage is possible.

This suggests that perhaps we should focus on entanglement as the quintessen-

tial quantum resource. Entanglement has been proposed as a quantifiable resource

for quantum information tasks [16]. By the previous example, entanglement is

necessary for a quantum advantage, at least for systems in pure states, and it
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can be shown to be necessary and sufficient for some quantum communication

tasks [17, 18] which make use of nonclassical correlations like in Bell’s inequality

experiments. One could ask if entanglement is a necessary and sufficient condition

for a quantum computational advantage. It turns out, the answer to this question is

no, entanglement is necessary but not sufficient.

There is a closed subtheory of quantum mechanics (consisting of a set of quan-

tum states, unitary operations, and measurements) called the stabilizer subtheory.

This subtheory contains plenty of entanglement, for example, Bell states are sta-

bilizer states,1 but by the Gottesman-Knill theorem [19], this subtheory can also

be simulated efficiently on a classical computer. Therefore, entanglement is not

sufficient for a quantum computational advantage. Quantum resources beyond the

scope of the stabilizer subtheory are necessary for a quantum computer to exhibit

a computational speedup over classical computation. By construction, nonstabiliz-

erness is necessary, but is it also sufficient? As we’ll see below, an answer to this

question can be provided by another classical simulation algorithm for quantum

computation based on Wigner functions [1].

But first, we take a detour and consider another candidate: contextuality. Con-

textuality is a feature of quantum theory which distinguishes it from classical the-

ory in which, if you assume a measurement reveals a predetermined measurement

outcome rather than producing a measurement outcome, then the outcome can de-

pend on the context in which an observable is measured, in addition to the physical

state of the system. That is, measurements can depend on which other observables

are measured simultaneously.

The concept of contextuality comes from the field of quantum foundations

which seeks to understand the most fundamental aspects of quantum theory and

similar physical theories. E.g. to determine characteristics that distinguish quan-

tum theory from classical theory, to characterize basic mathematical structures of

quantum theory, and to consider possible extensions of quantum theory.

A common question in this field is to ask to what extent classical explanations

can be applied to quantum phenomena. One form such classical explanations take

is hidden variable models which explain quantum phenomena in terms of unob-

1The stabilizer subtheory also contains entangling unitary operations and measurements.
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served (hidden) variables which align more closely with classical intuitions. This

line of research has a long history going back almost to the discovery of quantum

theory itself [20, 21]. It was originally motivated by the dissatisfaction of some of

the founders of quantum theory with certain unintuitive aspects of the theory. The

goal was to create a classical theory that could reproduce the predictions of quan-

tum theory. This was ultimately shown to be impossible because of quantum fea-

tures like nonlocality [22] and contextuality [23, 24]. As a result, these features are

used as indicators of quantumness in physical systems. That is, systems exhibit-

ing these festures could be labeled genuinely quantum whereas systems without

these features might behave more classically. Contextuality demarks the boundary

between the realms of classical and quantum physics.

Interestingly, contextuality has also been applied as an indicator of quantum-

ness from a computational perspective: contextuality has been shown to be neces-

sary for certain quantum computational tasks [25, 26]. But perhaps this is not so

surprising as a quantum computational advantage can itself demark a classical-to-

quantum transition.

Another proposed quantum computational resource is negativity in quasiprob-

ability representations like the Wigner function [27]. The Wigner function derives

from an attempt to adapt the phase-space formulation of classical statistical me-

chanics, which is based on probability distributions over the position-momentum

phase space, to quantum mechanics. The Wigner function has many of the same

properties as a probability distribution, but unlike a probability distribution it can

take negative values, making it a quasiprobability distribution.

Negativity in the Wigner function is the key feature that distinguishes it from

classical statistical mechanics and that allows it to represent quantum mechanics.

This motivates the use of negativity in quasiprobability distributions as quantum

indicators. In fact, negativity of the Wigner quasiprobability function [27] is an

indicator of quantumness that is commonly used in the fields of quantum optics

and quantum statistical mechanics [28]. This framework has been adapted to the

setting of finite-dimensional quantum mechanics by the introduction of so-called

discrete Wigner functions for the purpose of studying quantum computation [1, 29–

33].

We focus on a particular model of quantum computation called quantum com-
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putation with magic states (QCM) [34]. In this model, the allowed operations are

restricted to the unitary operations and the measurements of the stabilizer subthe-

ory. As noted above, these operations are not sufficient by themselves to perform

quantum computations exhibiting a computational speedup over classical compu-

tation. The power of quantum computation is restored in this model through the

inclusion of extra input quantum states called magic states. Then the task of char-

acterizing quantum computational resources can be reduced to characterizing the

set of quantum states which are useful for quantum computations in this model.

For quantum computation with magic states on odd-dimensional qudits—d

level quantum systems with d odd—any quantum circuit consisting of a sequence

of stabilizer operations on an input state with nonnegative discrete Wigner func-

tion can be simulated efficiently classically [1]. Since there are states which are

not stabilizer states but which have nonnegative discrete Wigner function, we can

conclude from this that arbitrary nonstabilizer resources are also not sufficient for

a quantum computational advantage. Wigner function negativity is also required.

It has been shown that, for the setting described above, nonnegativity of the

Wigner function implies the existence of a noncontextual hidden variable model [35,

36]. Therefore, three of the quantum indicators listed so far—contextuality, Wigner

function negativity, and a quantum computational speedup—agree. That is, the

boundary at which the Wigner function becomes negative is the same boundary

where the possibility of a noncontextual hidden variable model is eliminated, and

where a quantum computational speedup becomes possible [1, 26, 35, 36]. This

is a satisfying state of affairs. However, as mentioned above, it applies only to

quantum computation on systems with odd local Hilbert space dimension.

With quantum computation on even-dimensional systems, including the most

interesting case—quantum computation on qubits, the interaction between contex-

tuality, negativity, and a computational speedup is more complicated. First, there

is no longer a unique, natural way of defining a discrete Wigner function. No-

go theorems prevent a simple extension of the odd-dimensional Wigner funtion

from being applied to even dimensions, if the Wigner function is to be useful for

describing quantum computation [37–39]. Furthermore, the question of contextu-

ality is muddied by the existence of a generic (state-independent) contextuality that

doesn’t exist among the relevant observables on odd-dimensional qudits.
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In this thesis, we discuss an extension of the odd-dimensional Wigner function

that is suitable for describing quantum computation with magic states on systems

with any local Hilbert space dimension [2]. This generalized Wigner function pro-

vides a classical simulation algorithm for quantum computation on qubits which

shows that for QCM on qubits, as well as on odd-dimensional qudits, negativity in

a quasiprobability representation is a necessary precondition for a quantum com-

putational speedup. This realigns two of the quantum indicators above—negativity

in a quasiprobability representation and a quantum computational speedup.

Contextuality plays a central role in the definition of the generalized Wigner

function as points in the generalized phase space are associated with certain non-

contextual sets of Pauli observables—the observables of the stabilizer subtheory.

As a result of state-independent proofs of contextuality among the multiqubit Pauli

observables, the phase space over which the multiqubit Wigner function is defined

splinters and becomes much larger than might be expected for a generalization of

the odd-dimensional phase space. This enlarging of the phase space is a necessary

feature for a discrete Wigner function to be able to simulate quantum computation

with magic states on even dimensional qudits [39]. Although the phase space is

much larger, it maintains a certain amount of structure and points in this phase

space can be characterized, classified, and counted. The characterization of these

multiqubit phase space points is closely related to the characterization of noncon-

textual sets of multiqubit Pauli observables.

Although points in the generalized phase space are defined based on sets of

Pauli observables which are explicitly noncontextual, the interpretation of the hid-

den variable model implied by the quasiprobability representation for qubits as

contextual or noncontextual is more difficult. The necessity of some states to make

use of phase points corresponding to distinct sets of noncontextual Pauli observ-

ables in their representation leaves open the possibility of contextuality of the hid-

den variable model. This is not suprising as the model is capable of simuating

explicitly contextual systems.

We also present a hidden variable model for quantum computation with magic

states on qubits [3]. This model is structurally similar to quasiprobability represen-

tations like the discrete Wigner function, but unlike those representations it is ca-

pable of representing all states, operations, and measurements relevant to quantum

6



computation with magic states using only classical probabilities. States are repre-

sented by probability distributions over a finite set and the dynamical ingredients

of computation are represented by transition probabilities between the elements of

that set.

This representation leads to a classical simulation algorithm for quantum com-

putation with magic states that looks like a classical Markov decision process on a

finite state space. Since this is a universal model of quantum computation, this

means any quantum computation (and therefore all finite-dimensional quantum

mechanics) can be described using only classical probabilities—no negativity is

required. Note, however, that this classical simulation algorithm is not necessar-

ily efficient for simulating arbitrary quantum computations. In fact, if a quantum

computational advantage over classical computation exists then clearly this clas-

sical simulation algorithm cannot be efficient in general. This calls into question

the role of negativity as an indicator of quantumness for models of quantum com-

putation by showing that even negativity is not sufficient for a quantum computa-

tional speedup. The presence or absence of negativity can depend on the choice of

quasiprobability representation.

This thesis is structured as follows: in the next chapter, Chapter 2, we re-

view some preliminary material that will be necessary to effectively present and

frame the results of the subsequent chapters. This includes quantum computa-

tion with magic states—the computational model of interest, the discrete Wigner

function and associated classical simulation algorithm for quantum computation on

odd-dimensional systems, and contextuality and nonclassicality of hidden variable

models for finite-dimensional quantum mechanics. The generalized phase space

and Wigner function and the associated simulation method for quantum computa-

tion with magic states on qubits, as well as the characterization of the multiqubit

phase space are presented in Chapter 3. The hidden variable model for quantum

computation with magic states on qubits is presented in Chapter 4. We close with

a discussion of the implications of these results in Chapter 5. Computational meth-

ods are presented in Appendix A and some numerical results in Appendix B.
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Chapter 2

Background

In this thesis, we consider methods for describing quantum computation on qudits—

d level quantum systems. The states of each qudit are associated with the Hilbert

space Cd , with the computational basis an orthonormal basis {|s〉 | s ∈ Zd}. For

a system of n qudits, the full Hilbert space is
(
Cd
)⊗n. Later we will specialize

to qubits (d = 2). In the quantum circuit model, computation proceeds by apply-

ing a sequence of unitary gates, elements of U(dn), to a state initialized to |0〉⊗n,

followed by a measurement of each qudit in the computational basis.

We often consider models of quantum computation in which the allowed oper-

ations are restricted to a strict subset of U(dn). For example, a quantum computer

may only be able to implement certain local gates and two-qudit gates. If the al-

lowed operations are sufficiently expressive, this is not a problem. For example,

if a qubit based quantum computer can only implement the operations in the set

{H,T,CX}, it can still perform arbitrary quantum computations [4, §4.5.3].1 That

is, any unitary operation in U(2n) can be approximated to arbitrarily low error by

sequential application of the gates in this set.2 Gate sets with this property are

called universal for quantum computation.

Another reason for restricting the allowed operations is fault-tolerance. Quan-

tum computers are famously prone by errors caused by noise and decoherence.

1These gates are defined in the List of Symbols on page xvii.
2Formally, the topological closure of the group generated by the these operations acting on n

qudits with respect to the metric induced by the operator norm is U(2n).
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A foundational result of quantum computation is the quantum threshold theorem

which states that if the physical error rate for each operation in a model of quan-

tum computation can be made sufficiently small then quantum error correction

techniques can be applied to make the probability of an error in computation arbi-

trarily small. These quantum error correcting codes require the allowed operations

to have certain properties in order for the code to be able to correct errors faster

than they can spread.

A large family of quantum error correcting codes similar to classical linear

block codes together with a language for describing fault-tolerant quantum com-

putation more generally is the stabilizer formalism [40]. The stabilizer formalism

describes a closed subtheory of quantum mechanics consisting of a set of allowed

states, unitary operations, and measurements which allow for fault-tolerant quan-

tum computation. Although we are not concerned with the details of quantum error

correction here, the stabilizer formalism provides a useful mathematical framework

for characterizing superclassical models of quantum computation.

The allowed operations of the stabilizer formalism are not by themselves uni-

versal for quantum computation. In fact, the operations of the stabilizer subthe-

ory applied to stabilizer states can be simulated efficiently on a classical com-

puter [19, 41], therefore, there is no advantage to stabilizer quantum computation

over classical computation. In order to restore universality, extra resources (states

and/or operations) beyond the scope of the stabilizer formalism must be used. This

is the basis of the resource theory of stabilizer quantum computation [42]. The

characterization of the nonstabilizer resources which restore quantum computa-

tional universality to the stabilizer subtheory is a significant project, to which some

results of this thesis are a contribution.

The stabilizer formalism [40] and the associated resource theory [42] will be

useful in future chapters so we review it in the next section.

2.1 The stabilizer formalism
The stabilizer formalism is based on the Pauli group. First, the single-qubit Pauli

group is the group generated by the Pauli matrices, 〈X ,Y,Z〉 = 〈X ,Z, iI〉. The

Pauli operators can be generalized to d-dimensional qudits as follows. For any
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d ∈ N, define the generalized Pauli operators: X = ∑
d
j=1 | j+1 mod d〉〈 j| and

Z = ∑
d
j=1 ω j | j〉〈 j| with ω = exp(2πi/d) a primitive dth root of unity.3 Then the

single-qudit generalized Pauli group can be defined as the group 〈X ,Z,
√

ωI〉. The

n-qudit Pauli group, denoted P , is the group of Pauli operators acting on n qudits.

It is formed from tensor products of the elements of the one-qudit Pauli group.

The n-qudit Pauli group modulo phases, P/〈√ωI〉, is isomorphic to the ad-

ditive group of the free module Z2n
d . Fixing a phase convention, we can index the

Pauli operators by the elements of the module:4 for any a = (aZ,aX) ∈ Zn
d×Zn

d =:

E define,

Ta = eiφ(a)Z(aZ)X(aX) (2.1)

where X(aX) =
⊗n

k=1 XaX [k], and Z(aZ) =
⊗n

k=1 ZaZ [k]. We choose the phase func-

tion φ : E→R so that the operators satisfy the constraint (Ta)
d = I. This constraint

forces the eigenvalues of the operators to have the form ωk with k ∈ N.

The symplectic bilinear form on E, [·, ·] : E×E→ Zd , defined by

[a,b] := 〈aZ|bX〉−〈aX |bZ〉 (2.2)

tracks the commutator of the Pauli operators in the sense

[Ta,Tb] := TaTbT−1
a T−1

b = ω
[a,b]I ∀a,b ∈ E. (2.3)

In particular, operators Ta and Tb commute if and only if [a,b] = 0. Because of this

correspondence between the commutator of the Pauli operators and the symplectic

form on E, we will say a,b ∈ E commute when [a,b] = 0.

A stabilizer group is an Abelian subgroup of the n-qudit Pauli group which

stabilizes a nontrivial subspace of the n-qudit Hilbert space. For example, the 2-

qubit stabilizer group S = 〈X1X2,Z1Z2〉 stabilizes the Bell state |β00〉 = (|00〉+
3When d > 2, these operators are not Hermitian so they do not correspond directly to measure-

ments as they do in the case d = 2. They can be measured indirectly through the measurement of
Hermitian operators with the same eigenspaces, e.g. Z̃ = ∑

d
j=1 j | j〉〈 j|.

4When d is prime, Zd is a field so the index set Z2n
d forms a vector space. When d is not prime,

Zd is a commutative ring, not a field, and so Z2n
d is not a vector space. This distinction can introduce

some subtelty (e.g. see Ref. [32]), but for our purposes it is inconsequential and we will generally
treat Z2n

d as a linear space with notions of the standard inner product, 〈a|b〉 = ∑k a[k]b[k], and of
subspaces as subsets which are closed under addition and multiplication by elements of Zd .
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|11〉)/
√

2 since A |β00〉 = |β00〉 for each A ∈ S. On the level of the index set E,

a stabilizer group is specified by an isotropic subspace,5 Ĩ ⊂ E, together with a

function γ : Ĩ → Zd which specifies the phases of the stabilizer group elements.

The stabilizer group corresponding to the pair (Ĩ,γ) is S =
{

ω−γ(a)Ta | a ∈ Ĩ
}

.

The function γ is subject to some additional constraints required in order for S

to form a group. First, S must contain the identity operator and so we must have

ω−γ(0)T0 = I. We can define a function β that keeps track of how commuting Pauli

operators compose by

ω
β (a,b)TaTb = Ta+b, ∀a,b ∈ E with [a,b] = 0. (2.4)

From the closure of the group S we have ω−γ(a)Ta ·ω−γ(b)Tb = ω−γ(a+b)Ta+b. This

relation together with Eq. (2.4) gives the constraint that γ must satisfy

γ(a)+ γ(b)− γ(a+b) =−β (a,b), ∀a,b ∈ Ĩ. (2.5)

A useful identity of the function β comes from the associativity of operator mul-

tiplication [43]. By expanding each side of the equation Ta(TbTc) = (TaTb)Tc with

Eq. (2.4), we get ω−β (a,b+c)−β (b,c)Ta+b+c = ω−β (a+b,c)−β (a,b)Ta+b+c and so β must

satisfy

β (a,b+ c)+β (b,c) = β (a+b,c)+β (a,b) (2.6)

for any pairwise commuting a,b,c ∈ E. The functions γ and β will be given an

interpretation in section 2.7.2.

If a stabilizer group S is a maximal Abelian subgroup of the Pauli group then

it will stabilize a unique state. The unique state stabilized by a maximal Abelian

subgroup of the Pauli group is called a stabilizer state. These are the basic building

blocks of stabilizer codes as the codespace of any stabilizer code is the span of

some set of stabilizer states. In particular, the codespace of a code with stabilizer

group S is the subspace of the Hilbert space stabilized by S.

The unitary operations that can be easily implemented fault-tolerantly on en-

coded qudits in the stabilizer formalism form the Clifford group. The Clifford

5An isotropic subspace of a symplectic space is a subspace on which the symplectic form van-
ishes: [a,b] = 0, ∀a,b ∈ Ĩ ⊂ E.
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group is defined as the group of unitary operators that map Pauli operators to

Pauli operators under conjugation. As global phases are inconsequential in quan-

tum computation we can take the n-qudit Clifford group to be the quotient C ` :=

N (P)/U(1). That is, the normalizer of the Pauli group in the unitary group,

U(dn), modulo phases.

Unfortunately, the Clifford group is not universal for quantum computation—

the Clifford group is a finite subgroup of U(dn)/U(1). For qubits, it is the group

generated by the gates H, S, and CX [4, §10.5.2]. For qudits, the group is gener-

ated by the qudit analogues of these gates [44, 45].6 In fact, any quantum circuit

consisting of only Clifford unitaries and Pauli measurements can be efficiently sim-

ulated classically. This is the result of the so-called Gottesman-Knill theorem [19]

(also see Ref. [41]). A question we can now ask is: what nonstabilizer resources

can we add to the stabilizer formalism to restore universality? As alluded to above,

the capability to perform T gates would suffice, but T gates cannot be directly

implemented fault-tolerantly. An alternative approach to restoring universality is

quantum computation with magic states. This approach is discussed in the next

section.

2.2 Quantum computation with magic states
Quantum computation with magic states (QCM) [34] is a universal model of quan-

tum computation in which the allowed operations are restricted to Clifford gates

and Pauli measurements. These operations are not by themselves universal for

quantum computation. Furthermore, by the Gottesman-Knill theorem, any circuit

consisting of only these operations applied to a stabilizer input state can be simu-

lated efficiently on a classical computer and so these operations alone do not allow

for a quantum computational speedup over classical computation. Universality is

restored in QCM through the introduction of nonstabilizer ancillary states.7

By allowing nonstabilizer input states as well as adaptivity—conditioning gates

and measurements on the outcomes of prior measurements—we can effectively

6These gates are defined in the List of Symbols on page xvii.
7Often tensor products of one-qubit states such as |H〉〈H| := 1

2 I + 1
2
√

2
(X +Y ) or |T 〉〈T | :=

1
2 I + 1

2
√

3
(X +Y +Z) are used. These are sufficient for restoring universality.
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|H〉 • SX T |ψ〉

|ψ〉 X

Figure 2.1: An implementation of the T gate in the framework of quantum
computation with magic states. The components of this circuit are de-
fined in the List of Symbols on page xvii. Only Clifford operations,
Pauli measurements, and classical conditioning are used but with the
inclusion of a nonstabilizer input state, |H〉 = T |+〉, the effect of the
circuit is a T gate applied to the second qubit. For implementations of
other non-Clifford gates using different ancillas see [4, §10.6.2].

implement nonstabilizer operations using only Clifford gates and Pauli measure-

ments. An example of a procedure for implementing a T gate in the QCM frame-

work is shown in Figure 2.1. Since the Clifford+T gate set is universal [4, §4.5.3],

this shows that the QCM model is universal. We will generally refer to circuits

consisting of Clifford gates and Pauli measurements, possibly with adaptivity, as

QCM circuits. States which promote the model to universality are called magic

states or resource states.

In the QCM model, the main difficulty of universal fault-tolerant quantum com-

putation is shifted from implementing gates to preparing magic input states with

sufficient fidelity. Protocols for preparing certain magic states based on the stabi-

lizer formalism exist, called magic state distillation [34] (also see Ref. [4, §10.6.3]).

This is one of the leading candidates for a model of universal fault-tolerant quan-

tum computation.

Since the operations used in the QCM model are not by themselves universal,

but they become universal when paired with nonstabilizer input states, we can say

that the computational power of quantum computation is effectively transferred

from the operations to the states. This refines the question posed above: instead

of broadly considering which nonstabilizer resources are required for universal

quantum computation, we can focus on the states and ask: which quantum states

promote QCM to universality? One approach to studying this question is through

quasiprobability representations like the discrete Wigner function.
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2.3 Wigner functions
The Wigner function is the basis of an alternative formulation of quantum mechan-

ics discovered by Eugene Wigner in 1932 [27]. Instead of representing a state by a

wave function, the state is represented by a function over the position-momentum

phase space. If the position-space wavefunction of the system is ψ(x), the Wigner

function is defined as

W (x, p) =
1

π}

∞∫
−∞

dy ψ
∗(x+ y)ψ(x− y)e2ipy/}.

The Wigner function has several properties that make it structurally similar

to the phase-space formulation of classical statistical mechanics which is based

on probability distributions over phase space. For example, it is real-valued and

normalized:
∫

dxd p W (x, p) = 1. Further, integrating over one variable gives the

marginal probability distribution for the other variable:∫
d p W (x, p) = |ψ(x)|2,∫
dx W (x, p) = |ϕ(p)|2.

These properties make the Wigner function analogous to a joint probability

distribution over the position-momentum phase space. The crucial difference that

allows it to represent quantum mechanics is that, unlike a probability distribution, it

can take negative values. Such functions are called quasiprobability distributions.

Examples of the Wigner function for two particular states are shown in Fig. 2.2.

Negativity in the Wigner function is necessary for it to be able to represent

quantum mechanics. It is also what distinguishes it from classical statistical me-

chanics. For this reason, in the field of quantum optics where the Wigner function

formulation is commonly used, negativity of the Wigner function is considered an

indicator of true quantumness [28]. States with nonnegative Wigner function are

considered more classical than those for which the Wigner function takes negative

values.
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Figure 2.2: The Wigner functions for (a) a Gaussian state and (b) a cat state.
The Gaussian state has a Wigner function which is everywhere nonneg-
ative making it a probability distribution over the position-momentum
phase space. The Wigner function of the cat state takes negative values
at some points making it a quasiprobability distribution.

2.3.1 The Stratonovich-Weyl correspondence

In quantum optics and quantum statistical mechanics, several quasiprobability rep-

resentations of quantum states have been studied, for example, the Wigner func-

tion [27], the Sudarshan-Glauber P representation [46, 47], and the Husimi Q rep-

resentation [48]. They are all related by the Stratonovich-Weyl (SW) correspon-

dence, a set of criteria that reasonable quasiprobability representations over gener-

alized phase spaces should satisfy [49] (also see [50]).

Quasiprobabililty representations in the SW class have the form F(s)
A : X → C

where F(s)
A is the quasiprobability distribution representing the operator A, X is the

phase space over which the distribution is defined, and s ∈ [−1,1] is a real parame-

ter. In the standard quantum optics formulation, X is the position-momentum phase

space, and s = 0 for the Wigner function, s =−1 for the P function, and s = 1 for

the Q function [50].

The SW criteria are as follows:

(SW0) Linearity: the map A � F(s)
A is one-to-one and linear,
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(SW1) Reality:8

F(s)
A† (x) =

(
F(s)

A (x)
)∗

∀x ∈ X ,

(SW2) Standardization: ∫
X

dµ(x)F(s)
A (x) = Tr(A), (2.7)

(SW3) Covariance:

F(s)
g·A(x) = F(s)

A

(
g−1 · x

)
∀x ∈ X ∀g ∈ G (2.8)

where G is the dynamical symmetry group.

(SW4) Traciality:9 ∫
X

dµ(x)F(s)
A (x)F(−s)

B (x) = Tr(AB). (2.9)

Quasiprobability representations satisfying these criteria are structurally simi-

lar and thus closely related to the original Wigner function.

2.3.2 Discrete Wigner functions

Attempts to formulate analogues of the Wigner function that apply to quantum

mechanics in finite-dimensional Hilbert spaces go back to the 1980’s [29]. There

is even an essay by Richard Feynman from 1987 discussing the interpretation of

negative probabilities in physics which features a discrete Wigner function for one-

qubit states [51]. In 2004, a large family of discrete phase spaces and Wigner func-

tions was defined by Gibbons, Hoffman, and Wootters based on finite fields [52].

A particular Wigner function in this family that applies to odd-dimensional Hilbert

spaces was found by Gross and shown to have properties which align it with the

original Wigner function. This particular discrete Wigner function has found ap-

plications in the study of quantum computation on odd-dimensional qudits.

8If the operator A is Hermitian, as is usually the case for our purposes, this condition ensures the
quasiprobability function is real.

9In this sense, F(−s) is a dual quasiprobability representation to F(s).
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2.4 The odd-dimensional discrete Wigner function
Gross’ discrete Wigner function [32, 33, 53] is defined for systems of d-level qudits

where d is odd. To start, we fix the phase convention for the generalized Pauli op-

erators: eiφ(a) = ω−〈aZ |aX 〉2−1
in Eq. (2.1). Here 2−1 is the multiplicative inverse of

2 in Zd and the inner product is the standard inner product of Zn
d . With this choice

of phase, a direct calculation shows that for any a,b ∈ E, TaTb = ω [a,b]2−1
Ta+b.

Therefore, β (a,b) = 0 for all commuting a,b ∈ E.

The phase space over which the Wigner function is defined is V := Z2n
d and for

each point u ∈ V there is a corresponding phase space point operator Au.10 The

phase point operator corresponding to the zero vector, 0 ∈V , is

A0 :=
1
dn ∑

v∈E
Tv. (2.10)

Then all other phase point operators can be defined as translations from the base

point

Au := TuA0T †
u ∀u ∈V. (2.11)

Using the commutation relation Eq. (2.3), we can rewrite the phase point operators

in a more convenient form: Au = d−n
∑v∈E ω [u,v]Tv.

These phase point operators form an orthogonal operator basis for the space

of Hilbert-Schmidt operators on n-qudit Hilbert space: Tr(A†
uAv) = dnδu,v. There-

fore, for operators A and B expanded in the phase point operator basis with coef-

ficients WA(u),WB(u) ∈ C, ∀u ∈ V , the Hilbert-Schmidt inner product is given by

Tr(A†B) = dn
∑u∈V WA(u)∗WB(u). Since the phase point operators are Hermitian,

the coefficients WA(u) are real whenever A is Hermitian.

Any density matrix, ρ , representing a n-qudit quantum state can be expanded

in this basis as

ρ = ∑
u∈V

Wρ(u)Au. (2.12)

The coefficients in this expansion, given by Wρ(u) = d−nTr(ρAu) ∈ R, define the

discrete Wigner function of the state ρ . Since the phase point operators have

10The phase space is isomorphic to the index set for the Pauli operators. To distinguish them we
denote the former by V and the latter by E.
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unit trace, taking a trace of Eq. (2.12) we obtain 1 = ∑u∈V Wρ(u). Therefore, the

discrete Wigner function is a quasiprobability representation for n-qudit quantum

states.

Measurements also have a representation in this framework. For a POVM {Ek},
we could define the Wigner function of the element Ek to be the coefficients in the

expansion of Ek in the phase point operator basis as for density matrices, but it will

be more convenient to rescale the Wigner function and define the Wigner func-

tion representation of Ek as WEk(u) = Tr(EkAu). Then the probability of obtaining

outcome k given the measurement is performed on state ρ is given by

Tr(Ekρ) = ∑
u∈V

Wρ(u)Tr(EkAu) = ∑
u∈V

Wρ(u)WEk(u). (2.13)

The SW correspondence

To justify calling this quasiprobability representation a discrete Wigner function,

we can check that it satisfies the criteria of the SW correspondence. Consider a

Hilbert-Schmidt operator B expanded in the phase point operator basis as

B = ∑
u∈V

WB(u)Au. (2.14)

The coefficients in this expansion, given by WB(u) = d−nTr(BAu), define the quasi-

probability representation of the operator B.

We will consider the criteria in order: (SW0) Linearity of WB follows from the

linearity of the trace. (SW1) Since the phase point operators are Hermitian, tak-

ing the Hermitian adjoint of Eq. (2.14) we get B† = ∑u∈V WB(u)∗Au. Therefore,

WB†(u) = WB(u)∗ for all u ∈ V and so reality is satisfied. (SW2) Since the phase

point operators have unit trace, taking a trace of Eq. (2.14) we obtain standardiza-

tion: Tr(B) = ∑u∈V WB(u). (SW3) The relevant dynamical symmetry group in this

case is the Clifford group. Covariance of the discrete Wigner function with respect

to the Clifford group is discussed in the next section. (SW4) Finally, traciality fol-

lows from the representation of the Hilbert-Schmidt inner product where we take

the dual Wigner function to be equal to the Wigner function except rescaled by a

factor dn like the Wigner function representation of a POVM.
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2.5 The odd-dimensional Wigner function applied to
quantum computation with magic states

The discrete Wigner function representation has several properties that make it

useful for describing quantum computation with magic states on odd-dimensional

qudits [1, 32, 33, 53]. First, consider the representation of states. It can be shown

that a pure n-qudit state has a nonnegative Wigner function if and only if it is a

stabilizer state. This is the discrete Hudson’s theorem11 [32, 33] (also see [30]).

Nonnegativity of the Wigner function for stabilizer states is the first indica-

tion that the discrete Wigner function might be relevant for quantum computation

with magic states. In the case of infinite-dimensional quantum mechanics, as men-

tioned above, negativity in the Wigner function is an indicator of true quantumness

whereas states with nonnegative Wigner function are considered more classical.

From the perspective of quantum computation with magic states, stabilizer states

can be considered classical in the sense that they do not promote QCM to univer-

sality.

Probabilistic mixtures of pure stabilizer states clearly also have nonnegative

Wigner functions but they are not the only mixed states that are positively repre-

sented. Mixed states which are positively represented but are not convex combi-

nations of stabilizer states are called bound magic states. Figure 2.3 shows two

examples of the discrete Wigner function for one-qutrit (d = 3) states.

Now consider the dynamical elements of quantum computation with magic

states: Clifford unitaries and Pauli measurements.

2.5.1 Clifford unitaries

Clifford unitaries map phase point operators to phase point operators under con-

jugation [32]. In particular, for systems of odd-dimensional qudits, the Clifford

group splits as C `' Sp(2n,Zd)nZ2n
d where Sp(2n,Zd) is the symplectic group12

11This is the analogue for finite-dimensional quantum mechanics of Hudson’s theorem, which
applies to the original Wigner function defined in Section 2.3 and states that a pure state has non-
negative Wigner function if and only if it is a Gaussian state, i.e. it’s wavefunction has the form
ψ(x) = exp

(
−ax2 +bx+ c

)
[54].

12The symplectic group Sp(2n,Zd) is the group of symplectic transformations—linear maps on
the symplectic space Z2n

d which preserve the symplectic form.
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(a) Stabilizer state
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(b) Magic state

Figure 2.3: The discrete Wigner functions for two single-Qutrit states: (a) the
stabilizer state with stabilizer group 〈Z〉, and (b) the distillable magic
state |H+〉 described in Ref. [5]. The Wigner function of the stabilizer
state is everywhere nonnegative making it a probability distribution over
the phase space V = Z2

3. The Wigner function of the magic state takes
negative values at four points making it a quasiprobability distribution.

on Z2n
d . Then Clifford unitaries can be labeled by M ∈ Sp(2n,Zd) and b ∈ Z2n

d and

the action of the Clifford group on phase point operators is

UM,bAuU†
M,b = AMu+b. (2.15)

As a result of this fact, it can be easily shown that the Wigner function is Clifford

covariant:

WUM,bρU†
M,b
(u) =Wρ

(
U−1

M,b ·u
)
=Wρ

(
M−1(u−b)

)
. (2.16)

An example of a mapping of a qutrit phase point operator under a Clifford unitary

is given in Figure 2.4.

For a more complete discussion of the interaction between the Clifford group

and the discrete Wigner function see Ref. [32].

2.5.2 Pauli measurements

As a special case of the general POVM measurements described above we can con-

sider the case of projective Pauli measurements. For a Pauli measurement Ta, a ∈
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(a) Wigner function of A(1,1)
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(b) Wigner function of HA(1,1)H†

Figure 2.4: Under conjugation by the qutrit Clifford unitary H, the phase
point operator A(1,1) maps to the phase point operator A(2,1). In general,
phase point operators map deterministically to phase point operators un-
der conjugation by Clifford unitaries.

E, the eigenprojector corresponding to the measurement outcome ωs, s ∈ Zd is

Πa,s =
1
d ∑

k∈Zd

ω
−ksT k

a .

For any a ∈ E, the set {Πa,s | s ∈ Zd} is a projector-valued measure [36]. That is,

Π†
a,s = Πa,s = Π2

a,s for all a ∈ E and all s ∈ Zd , and for any a ∈ E, ∑s∈Zd
Πa,s =

I. The discrete Wigner function representation of a measure {Πa,s} is given by

WΠa,s(u) = Tr(Πa,sAu).

In order to describe quantum computation, we must allow for the possibility

of sequential measurements. That is, we need a way of extracting probabilities

for measurement outcomes as well as the postmeasurement state from the discrete

Wigner function. Both of these are obtained from the following lemma.

Lemma 1 Let Au, u ∈V be a phase point operator and Πa,s be an eigenprojector

corresponding to a Pauli measurement Ta, a ∈ E giving outcome ωs, s ∈ Zd . Then

Tr(Πa,sAu) = 1 if s = [a,u] and Tr(Πa,sAu) = 0 otherwise. Further, let Sa := {v ∈
E | [a,v] = 0} and Γa,u := {w ∈ E | [w,v] = [u,v] ∀v ∈ Sa}. Then

Πa,sAuΠa,s =
δs,[a,u]

|Γa,u| ∑
w∈Γa,u

Aw. (2.17)
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Proof of Lemma 1. By a direct calculation we obtain

Πa,sAuΠa,s =
1

dn+2 ∑
v∈E

∑
k,`∈Zd

ω
−(k+`)s+[u,v]T k

a TvT `
a

=
1

dn+2 ∑
v∈E

∑
k,`∈Zd

ω
−(k+`)s+[u,v]+(k−`)[a,v]2−1

Tv+(k+`)a

=
1

dn+2 ∑
v∈E

(
∑

k,`∈Zd

ω
−(k+`)s+[u,v]−(k+`)[u,a]+(k−`)[a,v]2−1

)
Tv

=
1

dn+2 ∑
v∈E

δ[a,v],0

(
∑

k,`∈Zd

ω
−(k+`)s+[u,v]−(k+`)[u,a]

)
Tv

=
1

dn+1 ∑
v∈E

δ[a,v],0

(
∑

k∈Zd

ω
[u,v]−k(s+[u,a])

)
Tv

=
1
dn ∑

v∈E
δ[a,v],0δs,[a,u]ω

[u,v]Tv (2.18)

Here in the first line we use the definitions of Πa,s and Au, in the second line we use

the relation TaTb = ω [a,b]2−1
Ta+b, in the third line we relabel v→ v− (k+ `)a. The

fourth line is obtained by observing that if [a,v] 6= 0 then regardless of the values

of s and [u,a], the coefficient in the parentheses is a uniformly weighted sum over

all dth roots of unity. In the fifth line we sum over `, and in the last line observe

that if s+[u,v] 6= 0 then the coefficient in parentheses is a sum over all dth roots of

unity.

Since all the generalized Pauli operators except T0 = I are traceless, taking a

trace of this final expression we obtain the first statement of the lemma: Tr(Πa,sAu)=

Tr(Πa,sAuΠa,s) = δs,[a,u]. For the second statement of the lemma, from Eq. (2.18),

we have

Πa,sAuΠa,s =
δs,[a,u]

dn ∑
v∈E

δ[a,v],0ω
[u,v]Tv.
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(a) Wigner function of A(1,1)
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(b) Wigner function of Πz,1A(1,1)Πz,1

Figure 2.5: A Pauli Z measurement on the qutrit phase point operator A(1,1)
gives outcome ω with probability Tr

(
Πz,1A(1,1)

)
= 1. Under the corre-

sponding projection, the phase point operator A(1,1) maps to the proba-
bilistic combination of the phase point operators A(1,0), A(1,1), and A(1,2)
with equal weight. In general, phase point operators map to probabilis-
tic combinations of phase point operators under Pauli measurements.

Also,

δs,[a,u]

|Γa,u| ∑
w∈Γa,u

Aw =
δs,[a,u]

|Γa,u| ·dn ∑
v∈E

(
∑

w∈Γa,u

ω
[w,v]

)
Tv

=
δs,[a,u]

dn ∑
v∈E

δ[a,v],0ω
[u,v]Tv.

Comparing this with the expression above we obtain the second statement of the

lemma. �

The implication of this lemma is that with respect to Pauli measurements, phase

point operators are associated with deterministic assignments of measurement out-

comes, and under Pauli measurements phase point operators map to probabilistic

combinations of phase point operators. An example of a Pauli measurement on a

qutrit phase point operator is given in Figure 2.5.

This lemma together with covariance of the Wigner function with respect to

Clifford unitaries leads to the following lemma.

Lemma 2 The set of positively represented states is closed under Clifford unitaries

and Pauli measurements.
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Proof of Lemma 2. Suppose a state ρ is positively represented. That is, ρ

can be expanded in the phase point operator basis as in Eq. (2.12) with Wρ(u)≥ 0

for all u ∈ V . Preservation of nonnegativity of the discrete Wigner function un-

der Clifford unitaries is clear from Eq. (2.16)—Clifford covariance of the discrete

Wigner function. Since the Wigner function Wρ(u) is nonnegative, under a Clifford

unitary UM,b ∈ C `, the Wigner function WUM,bρU†
M,b
(u) = Wρ(M−1(u− b)) is also

nonnegative.

Now consider a Pauli measurement performed on state ρ giving outcome ωs

with probability Tr(Πa,sρ)> 0. The Wigner function of the postmeasurement state

corresponding to this measurement outcome is

WΠa,sρΠa,s
Tr(Πa,sρ)

(u) = d−nTr
(

Πa,sρΠa,s

Tr(Πa,sρ)
Au

)
=

d−n

Tr(Πa,sρ)
Tr(ρΠa,sAuΠa,s)

=
d−n

Tr(Πa,sρ)
Tr

(
ρ

Tr(Πa,sAu)

|Γa,u| ∑
w∈Γa,u

Aw

)

=
d−nTr(Πa,sAu)

Tr(Πa,sρ) · |Γa,u| ∑
w∈Γa,u

Tr(ρAw)

=
δs,[a,u]

Tr(Πa,sρ) · |Γa,u| ∑
w∈Γa,u

Wρ(w). (2.19)

Here, in the second line we use linearity and the cyclic property of the trace, in

third line Eq. (2.17), in the fourth line linearity of the trace again, and in the last

line the definition of the Wigner function. Since Wρ(v)≥ 0 for all v ∈V , each term

in this sum is nonnegative. Therefore,

WΠa,sρΠa,s
Tr(Πa,sρ)

(u)≥ 0

for all u ∈V . That is, nonnegativity of the Wigner function is also preserved under

Pauli measurements. �
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2.6 Phase-space-simulation for quantum computation
with magic states on odd-dimensional qudits

Lemma 1 gives a way of extracting the probabilities associated with Pauli measure-

ments from the Wigner function of the state. In particular, for a Pauli measurement

Ta performed on state ρ , the probability of obtaining outcome ωs is given by

Tr(Πa,sρ) = ∑
u∈V

Wρ(u)Tr(Πa,sAu) = ∑
u∈V

Wρ(u)δs,[a,u].

Further, Eq. (2.16) and Eq. (2.19) give ways of extracting the Wigner function of

the updated state after Clifford unitaries and Pauli measurements from the Wigner

function of the initial state alone. In the case of Clifford unitaries, the Wigner

function of the updated state at a point u ∈ V is obtained deterministically from

the Wigner function of the initial state at a single phase space point. In the case of

Pauli measurements, the Wigner function at a point is a probabilistic combination

of the Wigner function of the initial state at multiple points.

These ideas lead to an efficient classical simulation algorithm for quantum

computation with magic states based on the discrete Wigner function that applies

whenever the input state to the quantum circuit, ρin, is positively represented.

When the Wigner function of the input quantum state is nonnegative, it is sim-

ply a probability distribution over the discrete phase space, meaning it can be sam-

pled from. The simulation algorithm proceeds by sampling a phase space point

u ∈ V according to the Wigner function distribution Wρin(u). The phase point is

then propagated through the circuit. When a Clifford unitary UM,b ∈ C ` is en-

countered, the phase point is updated as u→Mu+b. When a Pauli measurement

Ta, a ∈ E is encountered, we output s = [a,u] as the measurement outcome and

update u by sampling a new phase point according to the distribution implied by

Eq. (2.17). This provides samples from the joint probability distribution of the

measurement outcomes for the Pauli measurement in the circuit. A complete de-

scription of the classical simulation algorithm is given in Algorithm 2.1. A similar

classical simulation algorithm that applies to a slightly different family of circuits

was described first in Ref. [1].
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Input: Wρin ≥ 0
1: sample a point u ∈V according to the probability distribution Wρin

2: while end of circuit has not been reached do
3: if a Clifford unitary UM,b ∈ C ` is encountered then
4: update u←Mu+b
5: end if
6: if a Pauli measurements Ta, a ∈ E is encountered then
7: Output: ω [a,u]

8: sample w uniformly from Γa,u

9: update u← w
10: end if
11: end while

Algorithm 2.1: One run of the classical simulation algorithm for quantum
computation with magic states on odd-dimensional qudits based
on the discrete Wigner function. The algorithm provides samples
from the joint probability distribution of the Pauli measurements
in a quantum circuit consisting of Clifford unitaries and Pauli mea-
surements applied to an input state ρin with Wρin(u)≥ 0 for all u∈V .

We have the following result.

Theorem 1 For any number n ∈ N of qudits with odd local Hilbert space dimen-

sion d, and any n-qudit quantum state ρin with Wρin(u) ≥ 0 ∀u ∈ V , the classical

simulation algorithm of Algorithm 2.1 for sampling the outcomes of the Pauli mea-

surements in a circuit consisting of Clifford gates and Pauli measurements applied

to input state ρin agrees with the predictions of quantum mechanics. When the

Wigner function of the input state ρin is nonnegative and can be efficiently sampled

from, the simulation algorithm is efficient.

The proof of correctness for the classical simulation algorithm, Algorithm 2.1,

is similar in structure to the proof of Theorem 7 given in Chapter 4 so we leave

it out.13 To prove efficiency of the classical simulation algorithm, we must prove
13In fact, the proof of Theomem 7 can be applied almost without modification to prove correctness

of Algorithm 2.1 with a simple reinterpretation of the symbols. In particular, Aα → Au, u ∈ V
are the phase point operators, the action of the Clifford group is as AU ·α → AUM,b·u = AMu+b with
u ∈ V , M ∈ Sp(2n,Zd), and b ∈ Z2n

d , and the functions Q and q have particular forms based on
Lemma 1. Namely, Qa(s |α)→ Qa(s |u) = δ[a,u],s and qα,a(β ,s)→ qu,a(w,s) = 1

|Γa,u|δ[a,u],sδw∈Γa,u

with u,w ∈V , a ∈ E, and s ∈ Zd .
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four properties:

(E0) An efficient description for points in phase space,

(E1) The capacity to efficiently obtain samples from the probability distribution

describing the input state of the quantum circuit,

(E2) Efficient update of phase space points under Clifford unitaries,

(E3) Efficient extraction of Pauli measurement outcomes as well as efficient up-

dating of phase space points under Pauli measurements.

These are the efficiency criteria for any classical simulation algorithm for QCM

based on sampling like Algorithm 2.1. First, for (E0), specifying a point in phase

space is equivalent to specifying an element of Z2n
d . (E2) follows immediately from

Eq. (2.16): update under Clifford unitaries relies only on being able perform matrix

multiplication and vector addition in Z2n
d . Finally, for (E3), returning measurement

outcomes relies on calculation of the symplectic inner product in Z2n
d , and update

of phase space points after Pauli measurements relies on being able to sample an

element uniformly from a subset of Z2n
d . Each of these tasks can be performed

efficiently in the number n of qudits.

Property (E1) is included as an assumption of Theorem 1. We could prove

that this property holds for certain states of interest. For example, often n-qudit

magic states are taken to be tensor products of single-qudit magic states. In the

case of product states, the Wigner function is a product of single-qudit Wigner

functions [32]. Then, if the Wigner function of the input state is nonnegative,

each single-qudit Wigner function could be sampled independently giving efficient

samples from the product distribution.

Note that the classical simulation algorithm given in Algorithm 2.1 is slightly

different from the one described in Ref. [1] but the implication is the same: any

quantum circuit consisting of only Clifford unitaries and Pauli measurements ap-

plied to an input state with a nonnegative Wigner function can be classically simu-

lated efficiently.

When the Wigner function of the input state of a QCM circuit takes negative

values, Algorithm 2.1 does not apply but simulation is possible via probability esti-

mation [55, 56] which is generally inefficient. This algorithm is based on sampling
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from a probability distribution derived from the discrete Wigner function with the

number of samples required to estimate a probability to a given error ε proportional

to R(ρin)
2/ε2 where

R(ρin) = ∑
u∈V
|Wρin(u)|

is a measure of the amount of negativity in the Wigner function of the input state.

In this sense, negativity in the Wigner function of the input state to the circuit

determines the complexity of classical simulation of a quantum computation.

To summarize, QCM circuits can be efficiently classically simulated when the

Wigner function of the input state is positively represented, but generally not when

the Wigner function takes negative values. This means Wigner function negativity

is necessary for quantum computation with magic states on odd-dimensional qudits

to exhibit a speedup over classical computation.

This result provides a partial characterization of the states which are useful

for QCM. However, as noted above, it applies only when the local Hilbert space

dimension is odd. This restriction seems strange at first sight. An explanation for

this distinction between even and odd dimensions comes from a reinterpretation

of the discrete Wigner function and associated classical simulation algorithm for

quantum computation as a hidden variable model.

2.7 Hidden variable models
Attempts to formulate hidden variable models for quantum theory are almost as

old as quantum theory itself [20, 21]. Many of the early twentieth century physi-

cists who led the development of quantum mechanics were dissatisfied with the

indeterminism and nonlocality that seemed inherent to the theory. This led many

to suggest that quantum mechanics could not be the final and complete theory that

they were looking for, and that it must be augmented through the inclusion of “hid-

den variables” which aligned more closely with their intuitions.

The most famous example of a successful hidden variable model is de Broglie-

Bohm theory [20, 57, 58], also known as the pilot-wave interpretation of quantum

mechanics. This model skirts indeterminism but at the cost of requiring the hidden

variables to be explicitly nonlocal.
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The answer to the question of whether we can formulate a hidden variable

model of quantum mechanics that fully aligns with intuitions of locality and de-

terminism turns out to be a resounding no. This was first proven by John Bell in

1964 [22]. Bell proved that there are correlations between quantum observables

on entangled and spatially separated subsystems that cannot be reproduced by any

local theory. This was the first valid no-go result restricting hidden variable models

for quantum mechanics.14

An extension of Bell’s result, proven by Bell [23] and independently by Kochen

and Specker [24] states that there can be no noncontextual hidden variable model

for quantum theory. This result and contextuality are the focus of the next section.

2.7.1 Contextuality

The motivation behind deterministic hidden variable models for quantum theory is

the desire to think of the probabilistic predictions of quantum theory as a result of

epistemic uncertainty rather than of a more fundamental indeterminism. That is,

we would like to think that all measurements that can be performed on a system

have outcomes which are the uniquely determined by the physical state of the sys-

tem prior to the measurement. There can be uncertainty about the physical state

of the system, but the act of measurement should play no role in producing the

measurement outcome.

Mathematically, this idea is represented by deterministic value assignments—

functions that map quantum observables to the possible outcomes of those ob-

servables. These deterministic value assignments are associated with the “hidden

variables” of a hidden variable model. Quantum states are then represented by

probability distributions over the hidden variables.

The impossibility of representing quantum theory by a hidden variable model

of this form was proven by Kochen and Specker [24], and independently by John

Bell [23]. In particular, what they showed is that a hidden variable model repre-

senting quantum theory must be contextual. A contextual hidden variable model

is one in which the value assignments are not simply specified by functions from

observables to their possible measurement outcomes, instead the value assigned to

14There was an earlier no-go result for hidden variable models by von Neumann in 1932 [59] but
this result relied on a faulty assumption as pointed out by Hermann [60]. See Ref. [6] for a review.
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Figure 2.6: The two-qubit Pauli observables constituting the Mermin square,
a set of observables which gives a simple state-independent proof
of contextuality for quantum mechanics in four-dimensional Hilbert
space [6]. The observables, A,B,C, in each row/column give a con-
straint that a deterministic noncontextual value assignment must satisfy
of the form λ (A)λ (B)λ (C) = λ (ABC). The six constraints correspond-
ing to the rows and columns are inconsistent, proving there can be no
deterministic noncontextual value assignment for these observables.

an observable can depend on the measurement context. Formally, a measurement

context is a collection of simultaneously measurable observables. An observable

may belong to many mutually incompatible contexts with a contextual value as-

signment assigning a potentially different value to the observable depending on the

context in which it is measured.

In order for a hidden variable model to accurately represent quantum mechan-

ics, it must reproduce the measurement statistics predicted by quantum mechanics.

The original proofs of contextuality of quantum mechanics involved complicated

geometric arguments which ultimately proved the inability of any noncontextual

hidden variable models to accurately reproduce the predictions of quantum me-

chanics. A much simpler proof of contextuality that applies when the dimension

of the Hilbert space is at least four is known as the Mermin square.
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The Mermin square

A particularly simple proof of the contextuality of quantum mechanics with Hilbert

space dimension at least four is given by the so called Mermin square [6]. The Mer-

min square consists of the nine two-qubit Pauli observables shown in Figure 2.6.

The observables in each row and in each column commute and so they can

be measured simultaneously—these are the six maximal measurement contexts.

Multiplying the operators in each row and in each column we obtain the relations

X1 ·X2 ·X1X2 = I,

Z2 ·Z1 ·Z1Z2 = I,

X1Z2 ·Z1X2 ·Y1Y2 = I,

X1 ·Z2 ·X1Z2 = I,

X2 ·Z1 ·Z1X2 = I,

X1X2 ·Z1Z2 ·Y1Y2 =−I. (2.20)

We would like to define a deterministic noncontextual value assignment for

these observables. That is, a function λ from these observables to their eigen-

values that is consistent with the predictions of quantum mechanics. First, since

the only eigenvalue of the identity operator is 1,15 we must have λ (I) = 1. Then,

for consistency with the relations of Eq. (2.20), λ must map the Mermin square

observables to {+1,−1} subject to the constraints

λ (X1)λ (X2)λ (X1X2) = 1,

λ (Z2)λ (Z1)λ (Z1Z2) = 1,

λ (X1Z2)λ (Z1X2)λ (Y1Y2) = 1,

λ (X1)λ (Z2)λ (X1Z2) = 1,

λ (X2)λ (Z1)λ (Z1X2) = 1,

λ (X1X2)λ (Z1Z2)λ (Y1Y2) =−1.

But these six equations are inconsistent. To see this, note that if we multiply the

15A measurement of the identity on any state gives 1 with probability 1.
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six equations together, on the left hand side there are exactly two factors of λ (O)

for each observable O so since λ (O) =±1 for each observable, the left hand side is

+1. The right hand side is −1. This is a contradiction. Therefore, there can be no

deterministic noncontextual value assignment for the Mermin square observables.

This constitutes a state-independent proof of contextuality as it does not rely on a

hidden variable model reproducing the measurement statistics associated with any

state, it relies only on the properties of the observables.

Although a noncontextual value assignment may exist for a subtheory of quan-

tum mechanics consisting of a restricted set of observables (no state-independent

contextuality), it could still be impossible for a noncontextual hidden variable

model to reproduce the measurement statistics associated with those observables

on particular states. This is state-dependent contextuality [43].

For a more complete review of contextuality, see Ref. [6].

2.7.2 A cohomological description of contextuality

Contextuality among generalized Pauli observables can be described using group

cohomology [43]. In this description, a chain complex C∗ = C∗(E) is formed from

the index set E of the Pauli observables. Edges of the complex are associated with

the labels of the observables a ∈ E, faces are associated with commuting pairs

(a,b)∈ E×E, and volumes with pairwise commuting triples (a,b,c)∈ E×E×E.

Dual to C∗ there is a cochain complex C ∗ formed from maps from edges, faces,

and volumes of C∗ to Zd .

Then the function β defined in Eq. (2.4) is a 2-cocycle with the cocycle condi-

tion enforced by the associativity of multiplication for the operators corresponding

to edges of the complex. I.e., the relation Eq. (2.6) is equivalent to the statement

that for any volume (a,b,c)∈C∗, the coboundary dβ evaluated on (a,b,c) satisfies

dβ (a,b,c) := β (a,b)+β (a+b,c)−β (b,c)−β (a,b+ c) = 0. (2.21)

Noncontextual value assignments can be associated with 1-cochains. The re-

lation between a noncontextual value assignment for the Pauli observables λ :

P/〈√ω〉→
{

ωk | k ∈ Zd
}

and a 1-cochain γ : E→ Zd of C ∗ is given by λ (Ta) =

ωγ(a). For any commuting pair of observables, Ta and Tb, there is a consistency
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condition on the noncontextual value assignment λ : λ (Ta)λ (Tb) = λ (TaTb). Con-

straints of this form are enforced on the level of γ by the statement that for any face

(a,b) ∈ C∗, the coboundary dγ evaluated on (a,b) satisfies

dγ(a,b) := γ(a)+ γ(b)− γ(a+b) =−β (a,b). (2.22)

The existence of a function γ on the labels of a set of Pauli observables satisfying

this constraint is equivalent to the statement that there is no parity based state-

independent proof of contextuality like the Mermin square argument among the

corresponding observables.

Theorem 1 of Ref. [43] gives a relation between contextuality and the sec-

ond cohomology group H2(C ,Zd). It states that if H2(C ,Zd) 3 [β ] 6= 0, then the

corresponding observables exhibit state-independent contextuality. With this we

can see a key difference between the generalized Pauli observables in even and

odd-dimensional Hilbert spaces. For odd-dimensional qudits, [β ] = 0 but for even-

dimensional qudits (including qubits), [β ] 6= 0 [43].

This is a special case of a more general framework for describing contextuality

using group cohomology. See Ref. [43] for details.

2.7.3 The odd-dimensional Wigner function as a noncontextual
hidden variable model

Lemma 1 shows that phase point operators are associated with deterministic as-

signments of measurement outcomes for the generalized Pauli observables. In par-

ticular, the phase point operator Au = d−n
∑v∈V ω [u,v]Tv is associated with the value

assignment Ta � ω−[u,a]. It can be shown that for systems of multiple qudits, these

coincide precisely with the noncontextual value assignments of a hidden variable

model. That is, the discrete Wigner function defines a noncontextual hidden vari-

able model for the subtheory of quantum mechanics on systems of multiple odd-

dimensional qudits consisting of states with nonnegative Wigner function, Clifford

unitaries, and generalized Pauli measurements [26, 35, 36].

In this hidden variable model there is a hidden variable (or ontic state) corre-

sponding to each point in the phase space V . The admissible states, those with non-

negative Wigner function, are represented by probability distributions (the Wigner
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function) over the hidden variables. The Wigner function representation of a POVM

element Ek, WEk(u) = Tr(EkAu) can be interpreted as the probability of obtaining

outcome k given the measurement is performed on the “state” Au.16 Then Eq. (2.13)

is simply the law of total probability:

Pρ(k) = ∑
u∈V

Pρ(u)P(k |u) = ∑
u∈V

Wρ(u)WEk(u).

Here Pρ(u) is the probability of obtaining the ontic state Au given a preparation of

the quantum state ρ , and P(k |u) is the probability of obtaining measument out-

come k for a POVM measurement {Ek} on state Au.

With this reinterpretation of the discrete Wigner function, the classical simu-

lation algorithm, Algorithm 2.1, amounts to treating the hidden variable model as

physical [1]. The update rules for Clifford unitaries and Pauli measurements stated

in Eqs. (2.15) and (2.17) and used in the classical simulation algorithm represent

transition probabilities for the operations performed on the ontic states themselves.

Since not all physical states have a nonnegative Wigner function, not all states

can be represented by this noncontextual hidden variable model. States with Wigner

functions which take negative values are classified as contextual,17 and thus the two

traditional indicators of quantumness, negativity in the Wigner function and con-

textuality, agree [26, 35, 36]. With Algorithm 2.1, both are necessary conditions

for a quantum computational speedup over classical computation in QCM on odd-

dimensional qudits [1].

This interpretation of the discrete Wigner function as a hidden variable model

partially explains the difficulty in extending the results of the odd-dimensional

Wigner function to systems of qubits. For odd-dimensional qudits, the points in

phase space are associated with deterministic noncontextual value assignments for

the Pauli observables. For systems of multiple qubits, noncontextual value assign-

ments for the Pauli observables do not exist as evidenced by the Mermin square

proof of contextuality.

16The phase point operators are Hermitian and have unit trace like density matrices but they are
not positive semidefinite so they do not correspond to physical states.

17To say a state is contextual here is to say that it admits a state-dependent proof of contextuality
with the generalized Pauli observables.
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2.8 Quasiprobability representations for qubits
The discrete Wigner function defined in Section 2.4 applies only to systems of odd-

dimensional qudits. Attempting to formulate a phase space and discrete Wigner

function for qubits, or for systems of even local Hilbert space dimension, one im-

mediately runs into several issues. In this section we discuss the issues with a

naı̈ve generalizatin of the odd-dimensional Wigner function to qubits, and we re-

view some previously defined quasiprobability representations for quantum com-

putation with magic states on qubits.

2.8.1 The trouble with qubits

An ostensible issue with generalizing the odd-dimensional Wigner function to sys-

tems of even-dimensional qudits arises from the choice of phase used in the defini-

tion of the generalized Pauli operators that were then used in the definition of the

phase point operators in Section 2.4. In Eq. (2.1), the phase function φ was chosen

so that for any a ∈ E, eiφ(a) = ω−〈aZ |aX 〉2−1
. This is a convenient choice because

for any Pauli operators Ta and Tb, we have TaTb = ω [a,b]/2Ta+b. In particular, the

function β is zero whenever a and b commute. Defining the phase point operators

as in Eq. (2.10) and Eq. (2.11) with this choice of phase for the Pauli operators

leads to all the properties of the discrete Wigner function that make it useful for

describing of quantum computation with magic states, e.g. Clifford covariance and

positivity preservation under Pauli measurements.

A similar choice of phase is not possible for the multiqubit Pauli observables,

on the surface because there is no multiplicative inverse of 2 in Z2, but more fun-

damentally, because for the multiqubit Pauli operators H2(C ,Zd) 3 [β ] 6= 0 [43].

The closest analogue of the phase convention chosen above that works for

qubits is to set eiφ(a) = i〈aZ |aX 〉 with the inner product taken mod 4. This gives

a choice of phase for multiqubit Pauli operators that aligns with simply taking ten-

sor products of the standard Pauli matrices, I,X ,Y,Z. Unfortunately, the Wigner

function resulting from this choice of phase lacks the crucial properties that make

it useful for describing quantum computation with magic states.

First, it is not Clifford covariant. This is true already for one qubit. To see this,

note that the one-qubit phase point operators defined like in Eqs. (2.10) and (2.11)
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are

A(0,0) =
1
2
(I +X +Y +Z) A(0,1) =

1
2
(I +X−Y −Z)

A(1,0) =
1
2
(I−X−Y +Z) A(1,1) =

1
2
(I−X +Y −Z).

Under conjugation by the Clifford unitary H, HA(0,0)H† = 1
2(I+X−Y +Z) is not

a phase point operator.

This is not a problem that can be remedied simply by choosing a better phase

convention. In fact, it has been proven that no qubit Wigner function in which the

phase point operators form an operator basis is Clifford covariant [37, 38]. It turns

out that Clifford unitaries are not necessary for the universality of quantum compu-

tation with magic states. Pauli measurements are sufficient since any QCM circuit

containing Clifford gates and Pauli measurements is equivalent to another QCM

circuit containing only Pauli measurements [38]. Therefore, Clifford covariance

is not strictly needed for simulation of universal quantum computation with magic

states.

A more significant obstruction to obtaining a useful discrete Wigner function

for qubits from a computational perspective comes from the fact that in qudits

with even-dimensional Hilbert spaces, the Pauli operators exhibit state-independent

contextuality. Karanjai et al. proved a memory lower bound of O(n2) bits required

to simulate contextuality [39]. The implication of this result is again, if a discrete

Wigner function is going to be useful for simulating quantum computation with

magic states on qubits then the phase points operators over which it is defined

cannot form an operator basis. The cardinality of the phase space must be strictly

larger than 22n.

Several quasiprobability representations for systems of qubits have been de-

fined [61–65]. Some of these require restrictions on the allowed states or opera-

tions, others apply only in limited cases. We review some of these in more detail

below.
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2.8.2 The eight state model

In the definition of the one-qubit phase point operators above we made a choice of

phase for the Pauli operators: eiφ(a) = i〈aZ |aX 〉 in Eq. (2.1) with the inner product

taken mod 4. This choice is not unique. An equally valid choice would be eiφ(a) =

i−〈aZ |aX 〉, this choice also leads to Hermitian phase point operators of order 2. With

this alternative choice, the phase point operators are

Ã(0,0) =
1
2
(I +X−Y +Z) Ã(0,1) =

1
2
(I +X +Y −Z)

Ã(1,0) =
1
2
(I−X +Y +Z) Ã(1,1) =

1
2
(I−X−Y −Z).

Notice that under conjugation by H, the phase point operators A(0,0), A(0,1), A(1,0),

and A(1,1) map to Ã(0,0), Ã(0,1), Ã(1,0), and Ã(1,1) and vice versa. Instead of taking

only four standard phase point operators, if we take all eight operators to define

our phase space we get the so called eight state model [62].

For simplicity we can label the eight phase space point operators as A±±± =
1
2(I±X±Y ±Z). These eight phase points lose some of the properties held by the

odd-dimensional phase space. For example, the phase point operators do not form

an operator basis so for a one-qubit density matrix ρ , the decomposition

ρ = ∑
α∈{±±±}

Wρ(α)Aα (2.23)

is not unique. However, they regain some of the other properties that made the

discrete Wigner function useful for describing quantum computation. For exam-

ple, phase point operators map to phase point operators under conjugation by all

one-qubit Clifford unitaries making the (nonunique) Wigner function defined by

Eq. (2.23) Clifford covariant. Further, the Wigner function leads to a simulation

algorithm for QCM circuits on one qubit. This simulation algorithm is a special

case of the simulation method presented in Chapter 3 so we will not review it in de-

tail. It also goes beyond the odd-dimensional Wigner function in one respect—all

one-qubit states are positively representable.18

18We say positively representable here instead of postively represented because the decomposi-
tion Eq. (2.23) is not unique. A state being positively representable simply means there exists a
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2.8.3 A discrete Wigner function for rebits

A version of the the discrete Wigner function can be defined for rebits—qubit sys-

tems in which the states are described by real density matrices [61]. Beyond re-

stricting the admissible states to those with real density matrices, restrictions must

be imposed on the allowed operations. Measurements are restricted to CSS type

Pauli measurements [4, §10.4.2] and the unitary operations are restricted to CSS-

ness preserving Clifford unitaries. A universal QCM model can be defined with

these restrictions. The rebit Wigner function leads to an efficient classical simula-

tion algorithm for QCM on the set of rebit states which are positively represented.

2.8.4 Stabilizer quasimixtures

Let S denote the set of n-qubit stabilizer states represented by density matrices.

Then any state ρ can be decomposed as

ρ = ∑
σ∈S

sρ(σ)σ . (2.24)

Since density matrices are Hermitian, the coefficients sρ(σ) are real for all σ ∈S ,

and taking a trace of Eq. (2.24) we find 1 = ∑σ∈S sρ(σ). That is, the coefficients

sρ(σ) describe a quasiprobability representation of the state ρ [64].

This representation lends itself to a classical simulation algorithm for quantum

computation with magic states on qubits which is similar in structure to the algo-

rithm for odd-dimensional qudits based on the Wigner function. Classical simula-

tion is efficient when the input state of the QCM circuit is positively represented,

i.e. the input state is a mixture of stabilizer states. This algorithm can be seen as a

special case of the simulation method described in Chapter 3 so we will not review

it in detail.

When the quasiprobability representation takes negative values simulation is

still possible but it is generally inefficient. In this case, the complexity of simu-

lation (the number of samples required to achieve a given error) is governed by

the amount of negativity. Since the stabilizer states do not form a basis, they are

overcomplete, the decomposition Eq. (2.24) is not unique for any given state. The

decomposition of the form Eq. (2.23) in which the coefficients are nonnegative.
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freedom to choose the decomposition allows us to attempt to minimize the com-

plexity of the simulation by minizing the amount of negativity in the coefficients.

Then the robustness of magic, RS(ρ), defined as the solution to the minimization

problem

RS(ρ) = min

{
∑

σ∈S
|sρ(σ)|

∣∣∣∣ ρ = ∑
σ∈S

sρ(σ)σ

}
(2.25)

is the parameter governing the complexity of simulation in the case where negativ-

ity in the expansion Eq. (2.24) is unavoidable [64].
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Chapter 3

A generalized phase space and
Wigner function for qubits

The main result of Ref. [2] is a generalized phase space and discrete Wigner

function that applies to systems with any local Hilbert space dimension. This

generalized Wigner function effectively unifies and extends the odd-dimensional

Wigner function, the eight state model, and the quasiprobability representation

based on stabilizer quasimixtures, subsuming them as special cases of a more gen-

eral quasiprobability representation of quantum computation with magic states.

The definition of the generalized phase space directly takes into account a promi-

nent difference between the Pauli group in even and odd dimensions—the existence

of state-independent proofs of contextuality exemplified by the Mermin square.

The Wigner function provides a simulation method for quantum computation with

magic states on qubits which establishes negativity in the Wigner function of the

input state of a QCM circuit as a necessary condition for a quantum computational

speedup in QCM on qubits. Although for qubits the phase space is enlarged, it

maintains a certain amount of structure and points in the multiqubit phase space

can be characterized and counted.

In this chapter, we begin by defining the generalized phase space and Wigner

function. Then we consider the structure of the phase space in some particular

cases, including a complete characterization of the multiqubit phase space. Next

we consider how the phase space behaves under the dynamics of quantum com-
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putation with magic states on qubits and describe a classical simulation algorithm

for QCM on qubits based on the Wigner function. We close this chapter with a

discussion of the size of the generalized phase space.

3.1 Definition of the generalized phase space
Recall, a source of difficulty in extending the definition of the odd-dimensional

Wigner function to systems of multiple qubits (or systems with even local Hilbert

space dimension more generally), comes from the existence of state-independent

proofs of contextuality among the multiqubit Pauli observables. In the phase space

defined in section 2.4, points in phase space are associated with noncontextual

value assignments on the set of generalized Pauli operators (c.f. Section 2.7.3).

For multiple qubits, noncontextual value assignments for the Pauli observables do

not exist, as shown by the Mermin square proof of contextuality.

Even when noncontextual value assignments do not exist for the full set of

Pauli observables, they can still exist for certain subsets of the Pauli observables.

The definition of the generalized phase space presented here is based on subsets,

Ω⊂ E, satisfying the following definitions.

Definition 1 A set Ω⊂ E is called closed under inference if for every a,b∈Ω such

that [a,b] = 0, a+b ∈Ω.

This is a well-defined closure property. For a set Ω⊂E which is not necessarily

closed under inference, its closure under inference, denoted Ω̄, is the smallest set

containing Ω which is closed under inference.

Definition 2 A set Ω⊂ E is called noncontextual if its closure under inference, Ω̄,

admits a noncontextual value assignment. That is, there exists a function γ : Ω̄→
Zd satisfying

dγ(a,b) := γ(a)+ γ(b)− γ(a+b) =−β (a,b) (3.1)

for all a,b ∈ Ω̄ with [a,b] = 0.1

1For qubits, all addition in Z2 is mod 2 so Eq. (3.1) is equivalent to dγ(a,b) := γ(a)+ γ(b)+
γ(a+ b) = β (a,b). Since the primary focus of this chapter is on systems of qubits, this is the form
of this equation that we use in most of this chapter.
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Figure 3.1: Examples of cnc sets for the Mermin square observables. The full
Mermin square cannot be included in a cnc set since the Mermin square
is contextual. Possible cnc sets include: (a) a single measurement con-
text of the Mermin square, (b) two contexts of the Mermin square inter-
secting in one operator, and (c) three pairwise anticommuting operators.
Note: for closure, each set must also contain the identity.

The name closure under inference comes from the fact that if two observables

Ta and Tb commute then they can be measured simultaneously and the value of a

measurement of their product TaTb = ω−β (a,b)Ta+b can be inferred from the mea-

surements of Ta and Tb individually. The definition of noncontextuality in Def. 2

implies there is no state-independent proof of contextuality among the Pauli ob-

servables labeled by the elements of a noncontextual set Ω.

Note that in Section 2.7.1, a noncontextual value assignment was defined as a

function λ from the Pauli observables to the dth roots of unity subject to certain

constraints coming from the relations between the operators. Here we define a non-

contextual value assignment to be a function γ from the labels of the Pauli operators

to Zd subject to Eq. (3.1). These are equivalent through the relation λ (Ta) = ωγ(a).

In the rest of this thesis we use the additive notation of Eq. (3.1). I.e., noncontextual

value assignments are functions of the form described in Def. (2) and outcomes for

Pauli measurements are associated with elements of Zd rather than
{

ωk | k ∈ Zd
}

.

A set Ω⊂ E which is both closed under inference and noncontextual is called

cnc, for closed and noncontextual. Examples of cnc sets of two-qubit Pauli observ-

ables are given in Figure 3.1. With these definitions, we can define the generalized

phase space.
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Definition 3 The generalized phase space V consists of pairs (Ω,γ) with Ω ⊂ E

a set and γ : Ω→ Zd a function such that (i) Ω is closed under inference, (ii) Ω is

noncontextual, (iii) γ : Ω→ Zd satisfies Eq. (3.1), and (iv) γ satisfies

ω
−γ(0)T0 = I. (3.2)

For each phase space point, (Ω,γ) ∈ V , there is a corresponding phase space

point operator defined as

Aγ

Ω
=

1
dn ∑

b∈Ω

ω
−γ(b)Tb. (3.3)

These phase point operators are similar in structure to the phase point operators of

the odd-dimensional discrete Wigner function defined in section 2.4 except instead

of summing over all Pauli operators weighted by a noncontextual value assignment,

the set Ω ⊂ E over which the noncontextual value assignment is defined is an

additional varying parameter of the phase space and only operators in the set are

included in the sum.

These phase point operators span the space of Hermitian operators. Therefore,

any density matrix ρ can be expanded as

ρ = ∑
(Ω,γ)∈V

Wρ(Ω,γ)Aγ

Ω
. (3.4)

The coefficients in this expansion define the generalized discrete Wigner function

Wρ : V → R. Since, in general, the phase point operators are not a basis, they are

over-complete, the Wigner function is not unique. Any set of coefficients in an

expansion of the form Eq. (3.4) could define a valid Wigner function for a state ρ

but for the purpose of simulation of quantum computation discussed later in this

chapter, some Wigner functions are more useful than others.
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3.2 Relation to previous quasiprobability representations

3.2.1 Odd-dimensional qudits

When the local Hilbert space dimension is odd, there is no state-independent con-

textuality among the Pauli operators [43]. This means, the set E = Z2n
d is cnc. The

corresponding phase point operators have the form

Aγ

E = ∑
b∈E

ω
−γ(b)Tb

with γ : E→ Zd satisfying Eqs. (3.1) and (3.2). The phase point operators defined

in Section 2.4 also have this form (c.f. Section 2.7.3). Therefore, when the local

Hilbert space dimension is odd, we recover the odd-dimensional discrete phase

space as a subset of the generalized phase space. Note, however, that there are

phase points of the generalized phase space which do not correspond to phase

points in the standard odd-dimensional phase space (c.f. Ref [36]).

3.2.2 The eight state model

It is easy to check that the one-qubit set {0 = (0,0),x = (0,1),y = (1,1),z = (1,0)}=
Z2

2 with T0 = I, Tx = X , Ty = Y , and Tz = Z the one-qubit Pauli observables is cnc.

It is clearly closed under inference since all nonidentity observables pairwise anti-

commute so no nontrivial inference is possible. Also, since there are no nontrivial

commuting pairs of observables, any function γ : Z2
2→ Z2 satisfying the constraint

Eq. (3.2) also satisfies Eq. (3.1). There are eight such functions.

The eight resulting phase point operators have the form

Aγ

Z2
2
=

1
2 ∑

b∈Z2
2

(−1)−γ(b)Tb =
1
2
(I±X±Y ±Z) .

These are the phase point operators of the eight state model [62] defined in sec-

tion 2.8.2. Therefore, when restricted to one qubit, the generalized phase space

and Wigner function is equivalent to the eight state model.
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3.2.3 Stabilizer quasimixtures

As noted in section 2.1, a stabilizer group can be specified by a pair (Ĩ,γ) where

Ĩ ⊂ E is an isotropic subspace and γ : Ĩ→ Zd is a function satisfying ω−γ(0)T0 = I

and Eq. (2.5). Isotropic subspaces are closed by definition and with the constraint

on γ in Eq. (2.5), γ satisfies Eq. (3.1). Therefore, the pair (Ĩ,γ) satisfies the four

constraints of Def. 3 and so it specifies a point in phase space.

In the case where Ĩ is a maximal isotropic subspace, it is easy to check that Aγ

Ĩ
is a projector onto a stabilizer state. Therefore, the quasiprobability representation

based on stabilizer states discussed in section 2.8.4 can be obtained by restrict-

ing the generalized phase space V to include only pairs (Ω,γ) ∈ V where Ω is a

maximal isotropic subspace of E.

Since the stabilizer quasimixture representation is obtained from a restriction

of the phase space of Def. 3, it is easy to prove that all stabilizer mixtures are pos-

itively representable with respect to the generalized phase space V , and further-

more, there are states which are not stabilizer mixtures but which are positively

representable with respect to V . See, for example, Ref. [2, §IV.D.]. This result is

confirmed for up to three qubits by the numerical results presented in Appendix B.

3.2.4 Rebits

The definition of the generalized phase space can be easily modified to give a

generalized phase space and Wigner function for rebits. This involves restricting

to the cnc sets Ω to real Pauli matrices. Examples of real cnc sets are given in

Figure 3.1. The Wigner function obtained in this way is different from the rebit

Wigner function defined in Ref. [61]. In particular, the phase point operators are

different, and there are fewer restrictions on the allowed operations.

For the rest of this chapter, except where otherwise stated, we specialize to

systems of multiple qubits.

3.3 Characterization of the multiqubit phase space
In the odd-dimensional case and the single qubit case, the phase space has a very

simple structure. For multiple qubits, the phase space is necessarily much larger
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than might be expected for a generalization of the odd-dimensional phase space but

it maintains some structure and the points in phase space can still be characterized.

This characterization involves two parts: a characterization of multiqubit cnc sets

Ω ⊂ E, and a characterization of the noncontextual value assignments γ on those

sets. We start with the sets.

Lemma 3 For n qubits, consider an isotropic subspace Ĩ ⊂ E of dimension n−m,

with 0≤m≤ n, and ξ ≤ 2m+1 elements ak ∈ E that pairwise anticommute but all

commute with Ĩ. Denote Ik := 〈ak, Ĩ〉 for k = 1, . . . ,ξ . For any number n of qubits,

the sets

Ω =
ξ⋃

k=1

Ik (3.5)

are noncontextual and closed under inference.

Proof of Lemma 3. Existence. The sets Ω of Eq. (3.5) exist for all n,m,ξ . To

see this, consider the m-qubit Jordan-Wigner transforms of the Majorana Fermion

operators acting on qubits 1 to m,

C2 j−1 = I1... j−1X jZ j+1Z j+2 · · ·Zm−1Zm,

C2 j = I1... j−1YjZ j+1Z j+2 · · ·Zm−1Zm, (3.6)

for j = 1, . . . ,m, and, if m > 0, the further observable

C2m+1 = Z1Z2 · · ·Zm−1Zm. (3.7)

Further, let Ĩ be the isotropic subspace corresponding to a stabilizer state supported

on the n−m qubits numbered m+1, . . . ,n. Define ak via Ck ∝ Tak as in Eqs. (3.6)

and (3.7), for all k = 1, . . . ,2m+ 1. These ak and a ∈ Ĩ have the commutation

relations required.

Closedness. Consider a pair c,d ∈Ω such that [c,d] = 0. There are two cases.

(i) c,d ∈ Ik, for some k. Then c+d ∈ Ik, hence c+d ∈Ω.

(ii) c ∈ Ik and d ∈ Il , k 6= l. We may write c = νx+ g, d = µy+ g′, for some

ν ,µ ∈ Z2 and g,g′ ∈ Ĩ. The commutation relation [c,d] = 0 then implies that νµ =

0, hence either ν = 0 or µ = 0. W.l.o.g. assume that ν = 0. Then c ∈ Ĩ, hence
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c,d ∈ Il . Thus, c+d ∈ Il ⊂Ω.

In both cases, c,d ∈Ω and [c,d] = 0 implies that c+d ∈Ω. Hence Ω is closed

under inference.

Noncontextuality. There exists a function γ|Ĩ : Ĩ→ Z2 that satisfies eq. (3.1) on

Ĩ. We now extend this function to Ω as follows. The values γ(ak), for k = 1, . . . ,ξ

can be freely chosen, and for all a∈ Ĩ and all k, γ(ak+a) := γ(ak)+γ(a)+β (ak,a).

This fully defines γ : Ω→ Z2. All commuting triples c,d,c+ d lie within one of

the isotropic subspaces Ik forming Ω, and dγ(a,b) = β (a,b) thus holds.

This establishes that the sets Ω of Eq. (3.5) exist for the maximum value of ξ ,

ξ = 2m+ 1. One may always choose ξ smaller, which neither affects closedness

nor noncontextuality. �

Theorem 2 All n-qubit cnc sets Ω are of the form Eq. (3.5).

Proof of Theorem 2. Let Ω ⊂ E be closed under inference and noncontextual.

We can partition the elements of Ω into two subsets, Ω= {q1,q2, . . . ,qµ |g1,g2, . . . ,gν},
where Ĩ := {g1,g2, . . . ,gν} are the elements of Ω which commute with all other ele-

ments of Ω. Ĩ is an isotropic subspace of E since if two elements, a and b, commute

with Ω then clearly their sum, a+ b, also commutes with Ω, and a+ b ∈ Ω since

Ω is closed under inference. Ĩ is isotropic by definition.

If all elements of Ω pairwise commute then Ω = Ĩ is an isotropic subspace.

Isotropic subspaces are cnc. If Ω is not an isotropic subspace, then it can be written

compactly as

Ω =
ξ⋃

k=1

〈pk, Ĩ〉 (3.8)

where ξ ≥ 2, the cosets p1 + Ĩ, p2 + Ĩ, . . . , pξ + Ĩ are distinct, and q1,q2, . . . ,qµ

are contained in the cosets. Note that in this form, there can be no elements p j

which commutes with all of p1, p2, . . . , pξ because Ĩ is defined to contain all such

elements. Now we consider the possible commutation relations that p1, p2, . . . , pξ

can have given that Ω is noncontextual.

The Mermin square is generated by products of commuting pairs of the two-

qubit Pauli operators {X1,X2,Z1,Z2}. This is a contextual set. Therefore, any set

which is closed under inference and contains four elements, w.l.o.g. p1, p2, p3,
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and p4, with the commutation relations like those of {X1,X2,Z1,Z2}:

[p1, p2] = [p1, p4] = [p2, p3] = [p3, p4] = 0,

[p1, p3] = [p2, p4] = 1, (3.9)

will necessarily contain the full Mermin square and therefore be contextual.

Another sufficient condition for a set which is closed under inference to be

contextual is that it contains four elements with the commutation relations

[p1, p2] = [p2, p3] = [p3, p4] = 0,

[p1, p3] = [p1, p4] = [p2, p4] = 1. (3.10)

The reason is that since the set is closed under inference, it will necessarily contain

the elements p1 + p2 and p3 + p4, and the elements p1, p1 + p2, p3 + p4, p4 have

the commutation relations of Eq. (3.9). Thus, it must contain a Mermin square.

A similar argument shows that another sufficient condition for a set which is

closed under inference to be contextual is that it contains four elements with the

commutation relations

[p1, p2] = [p2, p3] = 0,

[p1, p3] = [p1, p4] = [p2, p4] = [p3, p4] = 1. (3.11)

In this case, since the set is closed under inference, it must also contain the elements

p1+ p2 and p2+ p3 and the elements p1+ p2, p2, p2+ p3, p4 have the commutation

relations of Eq. (3.9).

To determine the possible commutation relations of the elements p1, p2, . . . , pξ ,

we will look at their commutativity graph G . That is, the undirected graph with

a vertex for each of p1, p2, . . . , pξ and an edge connecting each pair of commut-

ing vertices. Since Ω is noncontextual, the commutation relations of Eqs. (3.9),

(3.10), and (3.11) provide restrictions on the possible commutation relations of

the elements p1, p2, . . . , pξ of Ω. In terms of the commutativity graph G , these

correspond to forbidden induced subgraphs.2

2An induced subgraph of a graph is the graph obtained by taking a subset of the vertices of the
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(a) C4 (b) P4 (c) P3∪K1

Figure 3.2: If a set Ω is cnc then no four of its elements can have the commu-
tation relations specified by Eqs. (3.9), (3.10), or (3.11). In terms of the
commutativity graph of the set these restrictions correspond to forbid-
den induced subgraphs. The restrictions on the commutation relations
of elements of a cnc set coming from Eqs. (3.9), (3.10), and (3.11) say
that the commutativity graph cannot have the graphs (a), (b), or (c) as
induced subgraphs. A similar relation between these graphs and con-
textuality was found in Ref. [7].

The restriction of Eq. (3.9) says that G cannot have a four-vertex cordless cycle

(C4) as an induced subgraph and the restriction of Eq. (3.10) says that G cannot

have a four-vertex path (P4) as an induced subgraph. These two forbidden induced

subgraphs characterize a family of graphs known as trivially perfect graphs [66].

Therefore, since Ω is cnc, G must be a trivially perfect graph.

Connected trivially perfect graphs have the property that they contain a univer-

sal vertex [66].3 If the commutativity graph G were connected then there would be

an elements p j which commutes with all other elements of {p1, p2, . . . , pξ}. This

is also forbidden. Therefore, G is disconnected.

Given that G is disconnected, Eq. (3.11) provides another restriction, namely,

that each connected component of G cannot have a three-vertex path (P3) as an

induced subgraph; i.e., each connected component of G is a clique. The three

forbidden induced subgraphs are displayed graphically in Figure (3.2).

original graph along with all of the edges connecting pairs of vertices in the subset.
3A universal vertex is a vertex that is adjacent to every other vertex in the graph.
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Ĩ

(a) m = 0

Ĩ

a1 + Ĩ

a2 + Ĩa3 + Ĩ

(b) m = 1

Ĩ

a1 + Ĩ

a2 + Ĩ

a3 + Ĩa4 + Ĩ

a5 + Ĩ

(c) m = 2

Figure 3.3: The commutativity graphs of the cosets of cnc sets of the form
Eq. (3.5) with parameter ξ = 2m+ 1 and different values for m. Each
node represents a coset of the isotropic subspace Ĩ. Elements pairwise
commute within each node and elements in adjacent nodes pairwise
commute. Elements in nonadjacent nodes pairwise anticommute.

This means we can partition the elements {p1, p2, . . . , pξ} into disjoint subsets

{p1, . . . , pξ}={p1,1, p1,2, . . . , p1,ξ1}
∪{p2,1, p2,2, . . . , p2,ξ2}
∪ · · ·∪{pπ,1, pπ,2, . . . , pπ,ξπ

} (3.12)

where two elements commute if and only if they are in the same subset in the

partition. Since the set {p1, . . . , pξ} is closed under inference, each subset in the

partition must be closed under inference. Now suppose that a subset in the partition

contains at least two elements. Then since the subset is closed under inference it

must also contain their sum. But each of the two elements anticommutes with the

elements of all other subsets in the partition, so their sum must commute with the

elements of all other subsets in the partition. This is a contradiction. Therefore, the

elements {p1, p2 . . . , pξ} of Eq. (3.8) pairwise anticommute. This completes the

proof. �

A result equivalent to the characterization of Eq. (3.12) was discovered inde-

pendently in Ref. [7] (also see [67]).

Lemma 3 and Theorem 2 effectively characterize all cnc sets of multiqubit

Pauli observables that could be used in the phase space of Def. 3. A graphical

representation of these sets is given in Figure 3.3.
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By including the cnc set Ω over which the noncontextual value assignments are

defined as an extra varying parameter, the phase space becomes much larger. When

all pairs (Ω,γ) satisfying the four conditions in Def. (3) are included in the defini-

tion of the generalized phase space, the phase space contains redundancy. It will

be convenient to reduce the size of the phase space by eliminating this redundancy.

This is achieved by the following lemma.

Lemma 4 A cnc set Ω ⊂ E is maximal if there is no cnc set Ω̃ ⊂ E such that

Ω ( Ω̃. Let VM denote the phase space consisting of pairs (Ω,γ) where Ω is a

maximal cnc set, and γ is a noncontextual value assignment on Ω, satisfying the

four conditions of Def. (3). Then for any (Ω̃, γ̃) ∈ V where Ω̃ is not maximal, there

are nonnegative coefficients c(Ω,γ)≥ 0 ∀(Ω,γ) ∈ VM such that

Aγ̃

Ω̃
= ∑

(Ω,γ)∈VM

c(Ω,γ)Aγ

Ω
.

Further, a state ρ is positively representable with respect to the phase space V if

and only if it is positively representable with respect to VM.

Proof of Lemma 4. For any cnc set Ω̃ and value assignment γ̃ on Ω̃, we have a

phase point operator Aγ̃

Ω̃
. If Ω̃ is not a maximal set, then as a result of Theorem 2,

Ω̃ has the form

Ω̃ =
ζ⋃

k=1

〈ak, Ĩ〉

where Ω̃ is contained in a maximal cnc set

Ω =
ξ⋃

k=1

〈ak, Ĩ〉

with ξ > ζ . Define two value assignments γ0 and γ1 on Ω as follows: γ0(b) =

γ1(b) = γ(b) for each b ∈ Ω̃, and for each b ∈ {aζ+1, . . . ,aξ}, define γ0(b) = 0

and γ1(b) = 1. The values of γ0 and γ1 on the remaining elements of Ω \ Ω̃ are
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determined by dγ0 = β and dγ1 = β . Then,

1
2
(
Aγ0

Ω
+Aγ1

Ω

)
=

1
2n+1 ∑

b∈Ω

(
(−1)γ0(b)+(−1)γ1(b)

)
Tb

=
1
2n ∑

b∈Ω̃

(−1)γ(b)Tb +
1

2n+1 ∑
b∈Ω\Ω̃

(
(−1)γ0(b)+(−1)γ1(b)

)
Tb

For each b ∈Ω\ Ω̃, we have one of two cases:

Case 1: If b ∈ {aζ+1, . . .aξ} then by definition γ0(b) = 0 and γ1(b) = 1.

Case 2: If b 6∈ {aζ+1, . . .aξ} then b = a j +g for some j ∈ {ζ +1, . . . ,ξ} and g ∈ Ĩ.

Then, with all addition mod 2, we have

γ0(b) = β (a j,g)+ γ0(a j)+ γ(g) = β (a j,g)+ γ(g)

and

γ1(b) = β (a j,g)+ γ1(a j)+ γ(g) = β (a j,g)+1+ γ(g).

In both cases, γ1(b) = γ0(b)+ 1 mod 2. Therefore, each term in the second

sum in the expression above vanishes and we have

1
2
(
Aγ0

Ω
+Aγ1

Ω

)
=

1
2n ∑

b∈Ω

(−1)γ(b)Tb = Aγ̃

Ω̃
.

If a state ρ has a nonnegative expansion with respect to V with positive co-

efficient on Aγ̃

Ω̃
, substituting the left hand side of this equation for Aγ̃

Ω̃
does not

introduce any negativity. Therefore, if a state is positively representable with re-

spect to V then it is positively representable with respect to VM. �

As a result of this lemma, from the point of view of representing states, there

is no generality lost in restricting the definition of the phase space to include only

phase points (Ω,γ) where Ω is a maximal cnc set. The characterization of cnc sets

satisfying this additional constraint is achieved with the following lemma.

Lemma 5 All maximal n-qubit cnc sets Ω are of the form Eq. (3.5) with 1≤m≤ n

and ξ = 2m+1.

Proof of Lemma 5. The fact that Eq. (3.5) sets exist and are cnc is proven in

Lemma 3. That there are no more cnc sets is proven in Theorem 2. Therefore,
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maximal cnc sets are sets of the form Eq. (3.5) for which ξ is maximal for a given

isotropic subspace Ĩ. First, if m = 0 then Ω = Ĩ is an isotropic subspace. Isotropic

subspaces are not maximal cnc sets because they are always contained in Eq. (3.5)

sets with parameter m = 1.

If the isotropic subspace Ĩ has dimension n−m where n is the number of qubits

and 1 ≤ m ≤ n, then the pairwise anticommuting elements ak which complete the

set are elements of Ĩ⊥/Ĩ where Ĩ⊥ is the symplectic complement4 of Ĩ. This is a

m-dimensional symplectic space, therefore the maximal value of ξ is the largest

number of pairwise anticommuting m-qubit Pauli operators. The largest sets of

pairwise anticommuting Pauli operators on m qubits have 2m+ 1 elements. This

can be seen as follows. Consider the elements ak ∈ E given by Tak ∝ Ck, with Ck

defined in Eq. (3.6). The set {ak | 1≤ k≤ 2m} consists of pairwise anticommuting

elements. There is an element c, with Tc ∝ C2m+1 (cf. Eq. (3.7)) that anticommutes

with each one of the elements in this set. It is the only element in E to do so, since

the set of equations

[c,ak] = 1, 1≤ k ≤ 2m

has a unique solution. Therefore, together with this element we can construct a set

of size 2m+1.

We would like to show any other set of pairwise anticommuting elements

whose size is 2m can be mapped bijectively to the set constructed. Suppose {ãk | 1≤
k ≤ 2m} is such a set. By Witt’s lemma [68, §20], the function that sends ak to ãk

extends to a linear map f : E→ E that satisfies [ f (v), f (w)] = [v,w] for all v,w ∈ E

(a symplectic transformation). Therefore, there is a unique element that anticom-

mutes with all the ãk, and it is given by f (c). In particular, 2m+1 is the maximal

number for ξ .

To complete the proof we must show that maximal sets of pairwise anticom-

muting elements on m qubits with cardinality less than 2m+1 do not lead to max-

imal cnc sets. To see this note that by Witt’s lemma, for any maximal anticommut-

ing set of size 2m′+ 1 (m′ < m), there is a symplectic transformation f : E → E

which maps the set to one of the form Eq. (3.6) and Eq. (3.7). Therefore, we can

find m−m′ independent elements which commute with the set. For example, if

4The symplectic complement of a set S⊂ E is the set S⊥ = {b ∈ E | [a,b] = 0 ∀a ∈ S}.
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g1,g2, . . . ,gm−m′ are the vectors corresponding to Pauli operators Xm′+1,Xm′+2, . . . ,Xm,

then we could take f−1(g1), f−1(g2), . . . , f−1(gm). Therefore, the n−m-dimensional

isotropic subspace can be extended to one with dimension n−m′.

This completes the proof. Therefore, all maximal cnc sets have the form

Eq. (3.5) with 1≤ m≤ n and ξ = 2m+1. �

Lemma 3, Theorem 2, Lemma 4, and Lemma 5 fully characterize the cnc sets

Ω ⊂ E which partially define the multiqubit phase space. To complete the char-

acterization of the phase space, we can also characterize the noncontextual value

assignments γ on these sets.

Lemma 6 Let Γ(Ω) denote the set of functions γ : Ω→ Z2 that satisfy the con-

straints Eqs. (3.1) and (3.2). Then for any cnc set Ω, Γ(Ω) is the coset of a vector

space U(Ω).

Proof of Lemma 6. Write γ = γ0 + η , where γ0 ∈ Γ(Ω) is some reference

function. Then the only condition on the functions η ∈U(Ω) is dη = 0. Thus, if

η ,η ′ ∈U(Ω) then cη + c′η ′ ∈U(Ω), for all c,c′ ∈ Z2. �

Equivalently, we can say that to specify a noncontextual value assignment γ on

a cnc set Ω of the form Eq. (3.5), it suffices to specify the value of γ on the genera-

tors of Ω (i.e. on a basis for the subspace Ĩ ⊂ E and on the pairwise anticommuting

elements a1,a2, . . . ). Any choice of values for γ on the generators of Ω uniquely

defines a noncontextual value assignment on Ω through the relation Eq. (3.1).

This completes the characterization of the multiqubit phase space.

3.4 Rules for state update under QCM dynamics
In the previous sections we have analyzed the generalized phase space V on which

the quasiprobability function is defined. We now turn to dynamics. For our setting

of QCM this concerns evolution under Clifford unitaries and Pauli measurements.

3.4.1 Clifford unitaries

Let C ` be the n-qubit Clifford group. It acts on the n-qubit Pauli operators via

U(Ta) :=UTaU† = (−1)ΦU (a)TU ·a, ∀U ∈ C `.
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This relation simultaneously defines the phase function Φ and the action of C ` on

E. It implies an action of the Clifford group on the phase point operators Aγ

Ω
, which

in turn induces an action on the sets Ω and the functions γ , via

U
(
Aγ

Ω

)
=

1
2n ∑

a∈Ω

(−1)γ(a)U(Ta) =
1
2n ∑

b∈Ω′
(−1)γ ′(b)Tb.

Therein, the set Ω′ is defined as Ω′ := {U ·a | a∈Ω}, and the function γ ′ : Ω′→Z2

is given by

γ
′(U ·a) := γ(a)+ΦU(a), ∀a ∈Ω.

Henceforth we denote Ω′ as U ·Ω and γ ′ as U · γ , to emphasize the dependence on

U ∈ C `.

For use in the proof below we quote Lemma 3 from Ref. [43], which says that,

for any face (a,b) ∈Ω×Ω,

ΦU (∂ (a,b)) = β (U ·a,U ·b)+β (a,b) mod 2.

We have the following result.

Lemma 7 V is mapped to itself undel C `, and the quasiprobability function W

transforms covariantly. That is, if the state ρ can be described by Wρ through

Eq. (3.4), then for any U ∈ C ` the state UρU† can be described by the quasiprob-

ability function

WUρU†(Ω,γ) :=Wρ(U−1 ·Ω,U−1 · γ).

Proof of Lemma 7. First, we show that the phase space is closed under the action

of C `, i.e., if (Ω,γ) ∈ V then (Ω′,γ ′) ∈ V . The four items in Definition 3 need to

be checked. (i) Ω′ is closed under inference. Assume that c,d ∈Ω′, and [c,d] = 0.

Then there exist a,b ∈Ω such that c =U ·a, d =U ·b and [a,b] = 0. Then c+d =

U ·a+U ·b =U ·(a+b)∈Ω′, since a+b∈Ω by assumption of closedness. Hence

Ω′ is closed under inference.
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(iii) γ ′ satisfies Eq. (3.1). With the definition of γ ′ we have (all addition mod 2)

dγ
′(U ·a,U ·b) = dγ(a,b)+φU (∂ (a,b))

= dγ(a,b)+β (U ·a,U ·b)+β (a,b)

= β (U ·a,U ·b).

Therein, in the third line we have used Eq. (3.1). Thus, γ ′ satisfies Eq. (3.1) on its

domain. (ii) Ω′ is noncontextual. With γ ′ we have just proved the existence of a

function on Ω′ that satisfies Eq. (3.1). (iv) γ ′ satisfies Eq. (3.2). Since γ satisfies

Eq. (3.2), it follows I = U(I) = U
(
(−1)γ(0)T0

)
= (−1)γ(0)+ΦU (0) = (−1)γ ′(0)T0.

Equation (3.2) is thus satisfied for γ ′. Hence, if (Ω,γ) ∈ V then (Ω′,γ ′) ∈ V , as

claimed.

Next, we turn to the covariance of W under C `. We have

UρU† = ∑
(Ω,γ)∈V

Wρ(Ω,γ)U(Aγ

Ω
)

= ∑
(Ω,γ)∈V

Wρ(Ω,γ)AU ·γ
U ·Ω

= ∑
(Ω,γ)∈V

Wρ(U−1 ·Ω,U−1 · γ)Aγ

Ω
.

Comparing the last expression with the expansion Eq. (3.4) for UρU†, we find that

for all U ∈ C `, the quasiprobability distribution WUρU† defined by

WUρU†(Ω,γ) =Wρ(U−1 ·Ω,U−1 · γ) (3.13)

describes the state UρU†. This is the covariance condition. �

3.4.2 Pauli measurements

To describe the dynamics under measurement, we need to set up some further no-

tation. For every set Ω we introduce the derived set Ω×a. Denoting Comm(a) :=

{b ∈ E | [a,b] = 0} and Ωa := Ω∩Comm(a),

Ω×a := Ωa∪{a+b | b ∈Ωa}, ∀a 6∈Ω. (3.14)
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Likewise, we define an update on functions γ invoking the measurement outcome

s of an observable Ta, namely, (·)× s : (γ : Ω→ Z2)� (γ× s : Ω×a→ Z2). We

define this update only for (Ω,γ) ∈ V , and only for a 6∈Ω.5 The updated function

γ× s : Ω×a→ Z2 is given by

γ× s(b) := γ(b), ∀b ∈Ωa, (3.15a)

γ× s(b) := γ(a+b)+ s+β (a,b), ∀a+b ∈Ωa. (3.15b)

The rules of Eq. (3.15) are used to formulate the update rule for phase point

operators of Eq. (3.3) under Pauli measurement.

Remark. Update rules similar to Eq. (3.15) have been used previously [69]

to construct a ψ-epistemic model of the multiqubit stabilizer formalism. Those

rules update the value assignment in the same way but are applied under different

conditions. Specifically, the update in Ref. [69] does not refer the general sets Ω

satisfying the conditions of Def. 3.

Lemma 8 Denote the projectors Πa,s := (I+(−1)sTa)/2, and let Aγ

Ω
a phase point

operator defined through Eq. (3.3), with (Ω,γ) ∈ V satisfying the conditions of

Definition 3. Then the effect of a measurement of the Pauli observable Ta with

outcome s on Aγ

Ω
is

Πa,sA
γ

Ω
Πa,s = δs,γ(a)

Aγ

Ω
+Aγ+[a,·]

Ω

2
, if a ∈Ω, (3.16a)

Πa,sA
γ

Ω
Πa,s =

1
2

Aγ×s
Ω×a, if a 6∈Ω. (3.16b)

Eq. (3.16) entails the update of both sets Ω and functions γ . Figure 3.4 displays

the update of the set Ω shown in Figure 3.1b, under the measurement of (a) the

observable X2 with a(X2) ∈Ω, and (b) the observable X1, with a(X1) 6∈Ω.

In preparation for the proof of Lemma 8 it is useful to state two relations of the

function β for d = 2. With the definition Eq. (2.4) of β and Eq. (3.2), the operator

5The definitions of Ω×a and γ× s can without modification be extended to a ∈Ω. However, in
that case the function values γ× s(b) can be determined through both Eqs. (3.15a) and (3.15b), and
we need to check consistency. These inferences are indeed consistent, as a consequence of Eq. (3.1).
Since we do not need the case of a ∈Ω subsequently, we skip the details of the argument.
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Figure 3.4: Update of a cnc set Ω in Mermin’s square, under two Pauli mea-
surements. (a) The measured observable X2 is such that a(X2) ∈ Ω;
hence the update proceeds by Eq. (3.16a). (b) The measured observable
X1 is such that a(X1) 6∈Ω; hence the update proceeds by Eq. (3.16b).

identities TaTa = I and TbI = Tb imply that

β (a,a) = β (a,0) = γ(0), ∀a ∈ E. (3.17)

Furthermore, evaluating dβ (a,a,0) = 0 (see Eq. (2.21)), and using Eq. (3.17)

yields

β (a,b) = β (a,a+b), ∀a,b. (3.18)

To prove Lemma 8 we also need the following result.

Lemma 9 If Ω⊂ E is noncontextual and closed under inference, then so is Ωa, for

all a ∈ E.

Proof of Lemma 9. First consider closure. Assume that c,d ∈Ωa and [c,d] = 0.

Then c,d ∈ Ω, and c+ d ∈ Ω, since Ω is closed by assumption. Further, [c,a] =

[d,a] = 0 implies [c+d,a] = 0, and hence c+d ∈Ωa. Ωa is thus closed.

Now consider noncontextuality. Since Ω is noncontextual, there exists a func-

tion γ such that dγ = β on Ω. Since Ωa is closed, β can be properly restricted to

C (Ωa), and so can γ . Hence, dγ|C (Ωa) = β |C (Ωa). Thus, Ωa is noncontextual. �

Proof of Lemma 8. Under the measurement of Ta with outcome s ∈ Z2 we have

I +(−1)sTa

2
Aγ

Ω

I +(−1)sTa

2
=

I +(−1)sTa

2
1
2n ∑

b∈Ωa

(−1)γ(b)Tb

=
1

2×2n ∑
b∈Ωa

(−1)γ(b)Tb +
(−1)s

2×2n ∑
b∈Ωa

(−1)γ(b)TaTb. (3.19)
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From hereon we need to distinguish two cases, a ∈Ω and a 6∈Ω.

Case I: a ∈Ω. Focusing on the second term in the expansion Eq. (3.19),

(−1)s
∑

b∈Ωa

(−1)γ(b)TaTb = (−1)s
∑

b∈Ωa

(−1)γ(b)+β (a,b)Ta+b

= (−1)s+γ(a)
∑

b∈Ωa

(−1)γ(a+b)Ta+b

= (−1)s+γ(a)
∑

a+b∈Ωa

(−1)γ(a+b)Ta+b

= (−1)s+γ(a)
∑

b∈Ωa

(−1)γ(b)Tb.

Therein, in the first line we have used Eq. (2.4), in the second line Eq. (3.1), in the

third line the completeness of Ωa under inference (Lemma 9), and the fourth line is

just a relabeling of the elements of Ωa. Inserting this result in the above expansion

Eq. (3.19), we find

Πa,sA
γ

Ω
Πa,s = δs,γ(a)

1
2n ∑

b∈Ωa

(−1)γ(b)Tb (3.20)

and Eq. (3.16a) follows.

Case II: a 6∈ Ω. Substituting b→ a+ b in Eq. (3.15b) gives γ × s(a+ b) =

γ(b)+ s+β (a,a+b), for b ∈Ωa. With Eq. (3.18) we obtain

γ× s(a+b) = γ(b)+ s+β (a,b), ∀b ∈Ωa. (3.21)

With this, we now look at the second term in the expansion Eq. (3.19),

(−1)s
∑

b∈Ωa

(−1)γ(b)TaTb = (−1)s
∑

b∈Ωa

(−1)γ(b)+β (a,b)Ta+b

= ∑
b∈Ωa

(−1)γ×s(a+b)Ta+b.

The first line above follows with Eq. (2.4), and the second with Eq. (3.21).

Considering the first term in the expansion Eq. (3.19), with Eq, (3.15a) we have

∑
b∈Ωa

(−1)γ(b)Tb = ∑
b∈Ωa

(−1)γ×s(b)Tb.
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Inserting the above expressions for the two terms in Eq. (3.19), and using the defi-

nition Eq. (3.14) of Ω×a, we obtain Eq. (3.16b). �

We have so far shown how the phase point operators can be updated under

measurement once. We still need to show that this update can be iterated. This

requires that the phase point operators appearing on the r.h.s. of Eq. (3.16) satisfy

the consistency constraints of Definition 3.

Lemma 10 If (Ω,γ)∈V then (Ω,γ+[a, ·])∈V , for all a∈Ω, and (Ω×a,γ×s)∈
Ω, for all a 6∈Ω and s ∈ Z2.

Proof of Lemma 10. Statement (A): (Ω,γ +[a, ·]) ∈ V , ∀a ∈Ω. The set Ω does

not change, and we need only to check the properties in Definition 3 that concern

the function update, i.e., Eqs. (3.1) and (3.2).

Assume that γ : Ω→ Z2 satisfies dγ = β on Ω, i.e., dγ( f ) = β ( f ) for all faces

f ∈ F(Ω). Consider any such face, with its boundary ∂ f consisting of the edges

c,d, and c+ d. By definition of F(Ω) it holds that c,d,c+ d ∈ Ω. Then, with all

addition mod 2,

d(γ +[a, ·])( f ) = dγ( f )+ [a, ·](∂ f )

= dγ( f )+ [a,c]+ [a,d]+ [a,c+d]

= dγ( f )

= β ( f ).

Thus, γ +[a, ·] satisfies Eq. (3.1).

Furthermore, assume that γ satisfies Eq. (3.2). Then (γ + [a, ·])(0) = γ(0)+

[a,0] = γ(0). Hence, γ +[a, ·] satisfies Eq. (3.2).

Statement (B): (Ω×a,γ× s) ∈ V , ∀a 6∈Ω and s ∈ Z2. There are four items to

check in Definition 3. Namely, (I) Ω× a is closed under inference, (II) Ω× a is

noncontextual, (III) γ× s satisfies Eq. (3.1), and (IV) γ× s satisfies Eq. (3.2).

(I): Consider c,d ∈ Ω× a, with [c,d] = 0, and denote c′ = c+ a, d′ = d + a.

There are three subcases. (i) c,d ∈Ωa. Then c+d ∈Ωa, since Ωa is closed under

inference by Lemma 9. Thus, c+d ∈Ω×a.

(ii) c ∈Ωa, d 6∈Ωa. By construction of Ω×a, d′ ∈Ωa. Thus, c+d = c+(d′+

a) = (c+ d′)+ a. Now, since [c,d] = 0 by assumption and [c,a] = 0 (c ∈ Ωa) it
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follows that [c,d′] = 0. Since Ωa is closed by Lemma 9, it holds that c+d′ ∈ Ωa.

By construction of Ω×a, c+d = (c+d′)+a ∈Ω×a.

(iii) c,d 6∈ Ωa. By contruction of Ω× a, c′,d′ ∈ Ωa. Thus, c+ d = (c′+ a)+

(d′+ a) = c′+ d′, and further [c′,d′] = 0. Since Ωa is closed under inference by

Lemma 9, c′+d′ = c+d ∈Ωa. Thus, c+d ∈Ω×a.

Thus in all three cases, c,d ∈ Ω× a, with [c,d] = 0, implies c+ d ∈ Ω× a.

Hence, Ω×a is closed under inference.

(III): Assume that dγ = β on Ω, and consider a triple of edges c,d,c+d ∈Ω×a

with [c,d] = 0. Then, either (i) all or (ii) one of these edges are in the component

Ωa.

(i) c,d,c+ d ∈ Ωa. Since Ωa ⊂ Ω and with Eq. (3.15a), it holds that d(γ ×
s)(c,d) = dγ(c,d) = β (c,d).

(ii) W.l.o.g. assume that c ∈ Ωa and d,c + d 6∈ Ωa, and denote c′ = c + a,

d′ = d +a as before. Then, for the face f = (c,d) with boundary ∂ f consisting of

the edges c, d and c+d,

d(γ× s)( f ) = γ× s(c)+ γ× s(d)+ γ× s(c+d)

= γ(c)+ γ(d′)+ γ(c+d′)+β (a,d)+β (a,c+d)

= β (c,d′)+β (a,d)+β (a,c+d)

= β (c,d)

Therein, in the second line we have used Eq. (3.15), in the third line Eq. (3.1), in

the fourth line Eq. (3.18), and in the fourth line dβ (a,d,c) = 0, cf. Eq. (2.21).

(II): Per Def. 2, Ω×a is non-contextual if there is a function τ : Ω×a−→ Z2

that satisfies dτ = β . We have explicitly constructed such a function in (III) above,

τ := γ× s.

(IV): Assume that γ : Ω−→ Z2 satisfies Eq. (3.2). Since 0 ∈Ωa for all cnc sets

Ω, with Eq. (3.15a) it follows that γ × s(0) = γ(0), and hence γ × s also satisfies

Eq. (3.2). �

Lemma 7, covariance of the Wigner function with respect to the Clifford group,

together with the update rules under Pauli measurements given in Lemma 8 with
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Lemma 10 lead to the following theorem.

Theorem 3 For any n ∈ N, the set of positively representable n-qubit quantum

states is closed under Clifford unitaries and Pauli measurement.

Proof of Theorem 3. Preservation positive representability under Clifford uni-

taries follows immediately from Lemma 7. For positivity preservation under Pauli

measurements, consider a positively representable state ρ and a measurement of

the Pauli observable Ta on it. Assume that the measurement outcome s can occur,

Tr(Πa,sρ)> 0. We have to show that under these conditions, the postmeasurement

state

ρ
′ =

Πa,sρΠa,s

Tr(Πa,sρ)

is also prositively representable.

Denote δ̄a∈Ω := 1−δa∈Ω. Then, with Lemma 8 and the state expansion Eq. (3.4)

of ρ , we have

ρ
′ = ∑

(Ω,γ)∈V

Wρ(Ω,γ)

Tr(Πa,sρ)

(
δa∈Ωδs,γ(a)

Aγ

Ω
+Aγ+[a,·]

Ω

2
+

1
2

δ̄a∈ΩAγ×s
Ω×a

)
. (3.22)

Thus, ρ ′ can be represented by a quasiprobability distribution Wρ ′ with elements

Wρ ′(Ω
′,γ ′) = ∑

(Ω,γ)∈V

Wρ(Ω,γ)

2Tr(Πa,sρ)

[
δa∈Ωδs,γ(a)

(
δ(Ω′,γ ′),(Ω,γ)

+δ(Ω′,γ ′),(Ω,γ+[a,·])
)
+ δ̄a∈Ωδ(Ω′,γ ′),(Ω×a,γ×s)

]
. (3.23)

The Wρ ′(Ω
′,γ ′) are thus linear combinations of Wρ(Ω,γ) with nonnegative coeffi-

cients (0 or 1/2Tr(Πa,sρ)). Since the Wρ(Ω,γ) are nonnegative by assumption, it

follows that Wρ ′(Ω
′,γ ′)≥ 0, for all (Ω′,γ ′) ∈ V . �

3.5 Phase-space-simulation for quantum computation
with magic states on qubits

Just like in the case of the odd-dimensional Wigner function, phase point opera-

tors map deterministically to phase point operators under conjugation by Clifford
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unitaries (Lemma 7) and phase point operators map to probabilistic combinations

of phase point operators under Pauli measurements (Lemma 8 with Lemma 10).

These two facts lead to an efficient classical simulation algorithm for quantum

computation with magic states on qubits based on the generalized Wigner function

representation that applies when the input state to the quantum circuit is positively

representable.

This algorithm is similar to the classical simulation method based on the odd-

dimensional Wigner function, Algorithm 2.1. A point in the generalized phase

space is sampled according to the Wigner function probability distribution repre-

senting the input state ρin. Then the phase point is propagated through the circuit

and updated when Clifford unitaries and Pauli measurements are encountered ac-

cording to the rules determined by Lemma 7 and Lemma 8. Outcomes for the

Pauli measurements are returned as the phase point is propagated through. The full

simulation algorithm is described in Algorithm 3.1.

Theorem 4 For any n ∈ N and any n-qubit quantum state ρin with Wρin(Ω,γ) ≥
0 ∀(Ω,γ) ∈ V , the classical simulation algorithm, Algorithm 3.1, for sampling the

outcomes of the Pauli measurements in a circuit consisting of Clifford unitaries and

Pauli measurements applied to input state ρin agrees with the predictions of quan-

tum mechanics. Further, when the Wigner function of the input state is nonnegative

and can be efficiently sampled from, the simulation algorithm is efficient.

The proof of correctness for a modified version of this simulation algorithm for

circuits consisting of Pauli measurements only is given in Section VI.B. of Ref. [2].

The extension of the proof to include Clifford unitaries is trivial so we leave it out.

The structure of the proof of correctness for Algorithm 3.1 is similar to the proof

of Theorem 7 given in Chapter 4.6 To prove efficiency, we must prove the four

efficiency criteria, properties (E0)–(E3), defined in Section 2.6. First, (E0), an

6Like in the case of the simulation algorithm based on the odd-dimensional Wigner function (foot-
note on page 26), the proof of Theorem 7 can be used with only minor modification to prove correct-
ness of Algorithm 3.1. In this case, Aα → Aγ

Ω
,(Ω,γ) ∈ V are the multiqubit phase point operators,

update under Clifford unitaries is as AU ·α → AU ·γ
U ·Ω, and the functions Q and q have particular forms

based on Lemma 8. Namely, Qa(s |α)→ Qa(s |(Ω,γ)) = δa∈Ωδγ(a),s +
1
2 δ̄a∈Ω and qα,a(β ,s)→

q(Ω,γ),a((Ω
′,γ ′),s) = 1

2 δa∈Ωδs,γ(a)

(
δ(Ω′,γ ′),(Ω,γ)+δ(Ω′,γ ′),(Ω,γ+[a,·])

)
+ 1

2 δ̄a∈Ωδ(Ω′,γ ′),(Ω×a,γ×s).
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Input: Wρin ≥ 0
1: sample a point (Ω,γ) ∈ V according to the probability distribution Wρin

2: while end of circuit has not been reached do
3: if a Clifford unitary U ∈ C ` is encountered then
4: update (Ω,γ)← (U ·Ω,U · γ)
5: end if
6: if a Pauli measurement Ta is encountered then
7: if a ∈Ω then
8: Output: γ(a)
9: flip a coin

10: if heads then
11: update (Ω,γ)← (Ω,γ)
12: else if tails then
13: update (Ω,γ)← (Ω,γ +[a, ·])
14: end if
15: else if a 6∈Ω then
16: flip a coin
17: if heads then
18: s← 0
19: else if tails then
20: s← 1
21: end if
22: Output: s
23: update (Ω,γ)← (Ω×a,γ× s)
24: end if
25: end if
26: end while

Algorithm 3.1: One run of the classical simulation algorithm for quantum
computation with magic states on qubits based on the generalized
Wigner function. The algorithm provides samples from the joint
probability distribution of the Pauli measurements in a quantum cir-
cuit consisting of Clifford unitraries and Pauli measurements ap-
plied to an input state ρin with Wρin(Ω,γ)≥ 0 for all (Ω,γ) ∈ V .
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efficient description for points in phase space, follows from the characterization of

the multiqubit phase space points given in Section 3.3. Specifying a phase space

point with parameters n and m requires specifying (n−m)+(2m+1) = n+m+1

elements of Z2n
2 as generators of the cnc set Ω along with n+m+ 1 elements of

Z2 so specify the value assignment γ : Ω→ Z2. This requires a number of bits

which is polynomial in the number n of qubits. Like in the case of Algorithm 2.1,

(E1) is included as an assumption of Theorem 4. Finally, the proofs of (E2) and

(E3), efficient handling of Clifford unitaries and Pauli measurements are given in

Section IV.B. of Ref. [2].

When negative values in the Wigner function of the input state to a QCM cir-

cuit are unavoidable, Algorithm 3.1 fails, but classical simulation is still possible

through probability estimation [55, 56]. In this case, like in the case of the odd-

dimensional Wigner function and the quasiprobability representation based on sta-

bilizer states, the complexity of classical simulation is proportional to the amount

of negativity in the Wigner function. Nonuniqueness of the multiqubit Wigner

function allows us to minimize the cost of classical simulation by minimizing the

amount of negativity in the Wigner function. Then, similar to the robustness of

magic defined in Eq. (2.25), the parameter which governs the complexity of simu-

lation is the phase space robustness, R, defined as the solution to the optimization

problem

R(ρ) = min
W

{
∑

(Ω,γ)∈V
|W (Ω,γ)|

∣∣∣∣ ρ = ∑
(Ω,γ)∈V

W (Ω,γ)Aγ

Ω

}
. (3.24)

In particular, using the algorithm of Ref. [55], the number of samples required to

estimate an outcome probability to a given error ε scales as R(ρ)2/ε2. For the

construction of a resource theory centered around the phase space robustness, see

Ref. [2, §VII.C.].

Numerical calculations of the robustness for some common magic states, along

with a comparison of the phase-space-simulation method with the stabilizer quasim-

ixture simulation method in terms of robustness and volumes of positively repre-

sentable states are given in Appendix B.

To summarize, we have an efficient classical simulation algorithm for quantum
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computation with magic states on qubits that applies whenever the input state to

the QCM circuit is positively representable. When the input state takes negative

values, classical simulation is still possible but it is generally inefficient. Therefore,

we have effectively established negativity in the generalized Wigner function as

a necessary condition for quantum computation with magic states on qubits to

exhibit a quantum computational speedup over classical computation, extending

the previous result that applied only to odd-dimensional qudits.

In the odd-dimensional case, contextuality serves as an indicator of a quan-

tum advantage for QCM that agrees with wigner function negativity. In the case

of qubits, the existence of state-independent contextuality makes the discussion

of contextuality of the hidden variable model implied by the generalized Wigner

function more complicated, as we’ll see below.

3.6 The SW correspondence and contextuality
Two items regarding the generalized Wigner function have so far been omitted:

(i) a justification for labeling the representation a discrete Wigner function through

the Stratonovich-Weyl correspondence, and (ii) the classification of the hidden

variable model implied by the generalized Wigner function as either contextual

or noncontextual. It turns out, these two items are closely related. With suitable

modifications, the SW criteria can be made to apply to the setting described here

(see Ref. [2, §VIII.A.] for the complete discussion of how the SW criteria apply to

the generalized Wigner function). One of the more significant modifications to the

SW criteria that must be made is in the linearity condition.

The linearity condition ensures that the map from operators to the quasiprob-

ability distributions representing them is one-to-one and linear. The generalized

Wigner function for multiqubit states is not unique, and hence this map is not

one-to-one, it is one-to-many. As a result of contextuality among multiqubit Pauli

observables, this modification is required for a discrete Wigner function to be able

to simulate QCM on multiple qubits.

The interpretation of the hidden variable model implied by the generalized

Wigner function as contextual or noncontextual is more difficult for qubits than

it is for odd-dimensional qudits. First, there is some ambiguity in how to interpret
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the value assignments. For a cnc set Ω⊂ E with a noncontextual value assignment

γ : Ω→ Z2, γ could be interpreted as a deterministic but partial value assignment

for the multiqubit Pauli observables, or as a total but probabilistic value assignment

which assigns an expectation value of 0 to observables not in Ω.

The first interpretation could define a valid noncontextual hidden variable model

but only if we restrict to states which can be positively represented by phase point

operators corresponding to a single cnc set Ω, and we restrict measurements to

observables labeled by Ω. The assumption of the classical simulation algorithm

of Section 3.5 is that states can access all phase point operators Aγ

Ω
in their rep-

resentation and that there is no restriction on the Pauli measurements that can be

performed. This suggests the second interpretation of the value assignments as

more appropriate.

With probabilistic value assignments, the original definition of contextuality

cannot be easily applied. More recently, there have been generalizations of contex-

tuality which do allow for probabilistic value assignments, for example, Spekkens

notion of generalized contextuality [73]. With this generalized contextuality, it is

precisely the nonuniqueness of the Wigner function (or equivalently, the modifi-

cation of the linearity condition of the SW correspondence) which leaves open the

door for a generalized contextuality, in particular, for Spekkens definition of prepa-

ration contextuality [73]. For a more complete discussion of the interpretation of

the contextuality of this model, see Ref. [2, §VIII.B.].

3.7 Size of the generalized phase space
As shown in Section 3.2.1, when the local Hilbert space dimension is odd the

generalized phase space contains the phase space of the standard odd-dimensional

Wigner function defined in Section 2.4 with cardinality |V |= |Z2n
d |= d2n.

For multiple qubits, state-independent contextuality causes the phase space to

splinter. The cardinality of the multiqubit phase space is much larger than the 22n

that might be expected for a generalization of the odd-dimensional Wigner func-

tion. This is an important feature of the generalized phase space which allows it to

simulate contextual scenarios like the Mermin square and that allows the general-

ized Wigner function to be Clifford covariant [37–39]. In this section, we explore
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this feature in more detail.

We consider the size of the generalized phase space that is used for represent-

ing states consisting of pairs (Ω,γ) ∈ V subject to the constraints of Def. 3 with

the additional constraint that Ω is maximal. Using the classification of multiqubit

phase space points described in Section 3.3 we can count the number of multiqubit

phase space points.

Theorem 5 The cardinality of the n-qubit phase space is

|V |=
n

∑
m=1

{
2n+m2+m+1

(2m+1)!

[
n

m

]
4

(
n−m

∏
k=1

2k +1

)(
m

∏
j=1

4 j−1

)}
(3.25)

where

[
n

m

]
4

:=
m
∏

k=1

4n−k+1−1
4k−1 is the Gaussian binomial coefficient.

Proof of Theorem 5. Per Lemma 5, maximal cnc sets have the form

Ω =
2m+1⋃
k=1

〈ak, Ĩ〉

where 1≤m≤ n, Ĩ is a n−m-dimensional isotropic subspace of E, and the vectors

a1,a2, . . . ,a2m+1 ∈ Ĩ⊥/Ĩ pairwise anticommute.

The number of phase space points (Ω,γ) with parameters n and m is the product

of three factors: (i) the number of n−m-dimensional isotropic subspaces Ĩ ⊂ E,

(ii) given each subspace Ĩ, the number of ways of choosing the remaining gen-

erators a1,a2, . . . ,a2m+1 of the set, and (iii) the number of noncontextual value

assignments on the set.

First we consider (i), the number of isotropic subspaces Ĩ (a similar counting

argument to the one used in this part of the proof is given in the proof of proposi-

tion 2 in Ref. [41]). The number of n−m-dimensional isotropic subspaces is equal

to the number of ways of choosing a set of generators g1,g2, . . . ,gn−m for Ĩ divided

by the number of generating sets that give the same isotropic subspace. The first

generator, g1, can be any element of E \{0}. There are 4n−1 choices. The second

generator, g2, must commute with g1. There are 4n

2 −2 choices. In general, the kth

generator must commute with the first k−1 generators and not lie in their span so
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there are 4n

2k−1 −2k−1 choices. Therefore, the number of ways of choosing the n−m

generators of the isotropic subspace Ĩ is

N1 =
n−m

∏
k=1

4n

2k−1 −2k−1 = 2(n−m)(n−m−1)/2
n−m

∏
k=1

4n−k+1−1.

Similarly, we can count the number of generating sets which give a fixed

isotropic subspace Ĩ. The first generator, g1, can be any of the 2n−m− 1 nonzero

elements of Ĩ. The second, g2, can be any element of Ĩ \ 〈g1〉. There are 2n−m−2

choices. In general, the kth generator, gk, can be any element of Ĩ\〈g1,g2, . . . ,gk−1〉.
There are 2n−m−2k−1 choices. Therefore, the number of possible generating sets

for each isotropic subspace is

N2 =
n−m

∏
k=1

2n−m−2k−1 = 2(n−m)(n−m−1)/2
n−m

∏
k=1

(2k−1).

Therefore, the number of n−m-dimensional isotropic subspaces of E is

N(i) =
N1

N2
=

n−m

∏
k=1

4n−k+1−1
2k−1

=

[
n

m

]
4

·
n−m

∏
k=1

2k +1

where

[
n

m

]
4

is the Gaussian binomial coefficient.7

Now consider (ii), given a n−m-dimensional isotropic subspace Ĩ, the number

of ways of choosing a1,a2, . . . ,a2m+1 from Ĩ⊥/Ĩ. Because of the the isomorphism

Ĩ⊥/Ĩ 'Z2m
2 , this is equal to the number of maximal sets of pairwise anticommuting

elements in the symplectic vector space Z2m
2 of size 2m+1. Let A ⊂P(Z2m

2 ) be

the set of all such sets, and A = {a1,a2, . . . ,a2m+1} ∈A be one particular set.

To find |A |, consider the action of the symplectic group, Sp(2m,Z2), on A

induced by the action of Sp(2m,Z2) on the elements of the sets in A . As shown in

the proof of Lemma 5, the symplectic group acts transitively on A . Therefore, by

7Incidentally, the second factor in the final expression for N(i) is equal to the number of maximal

isotropic subspaces in Z2(n−m)
2 . Therefore, the Gaussian binomial coefficient

[
n
m

]
4

can be interpreted

as the number of inequivalent symplectic maps taking all maximal isotropic subspaces in Z2(n−m)
2 to

n−m-dimensional isotropic subspaces in Z2n
2 .
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the orbit-stabilizer theorem and Lagrange’s theorem [70],

|A |= |Sp(2m,Z2) ·A|= [Sp(2m,Z2) : Sp(2m,Z)A] =
|Sp(2m,Z2)|
|Sp(2m,Z2)A|

where Sp(2m,Z2)A = {M ∈ Sp(2m,Z2) |M ·A=A} is the stabilizer of A in Sp(2m,Z2).

Consider a permutation σ of {1,2, . . . ,2m+1} and a linear map that sends ak

to aσ(k) for 1 ≤ k ≤ 2m. By Witt’s lemma [68, §20], this map extends to a sym-

plectic transformation f : Z2m
2 → Z2m

2 and since 〈a1,a2, . . . ,a2m〉= Z2m
2 , this exten-

sion is unique. Also, since the two systems of equations [ak,c] = 1, 1 ≤ k ≤ 2m

and [ f (ak),c] = 1, 1≤ k ≤ 2m each have a unique solution, f (a2m+1) = aσ(2m+1).

Therefore, any permutation of the elements of the set A = {a1,a2, . . . ,a2m+1} de-

fines a unique symplectic transformation of Z2m
2 . I.e. |Sp(2m,Z2)A| = (2m+ 1)!.

Also, |Sp(2m,Z2m
2 )|= 2m2

∏
m
j=1 4 j−1. Thus, the number of maximal sets of pair-

wise anticommuting elements in Z2m
2 of size 2m+1 is

N(ii) =
|Sp(2m,Z2)|
|Sp(2m,Z2)A|

=
1

(2m+1)!
2m2

m

∏
j=1

4 j−1.

Now consider (iii), the number of noncontextual value assignments. A noncon-

textual value assignment γ for a set Ω with parameters n and m is uniquely defined

by its values on the generators of Ω through the relation Eq. (3.1), and its values on

the generators can be chosen freely. For a set Ω with parameters n and m, there are

(n−m)+ (2m+ 1) = n+m+ 1 generators and so for a set with these parameters

there are N(iii) = 2n+m+1 noncontextual value assignments γ .

The product N(i) ·N(ii) ·N(iii) gives a generic term in the sum Eq. (3.25). Then,

summing m from 1 to n gives the result. �

Table 3.1 shows the size of the generalized phase space for a few different

cases. From this we can see that the size of the full generalized phase space for

multiple qubits is very large, much larger than 22n as would be expected for a

naı̈ve generalization of the odd-dimensional phase space, V = Z2n
d . It turns out

that for the purpose of representing states, not all of these phase space points are

needed simultaneously. First, for any positively representable state ρ , there is a

nonnegative Wigner function Wρ : V → R≥0 representing ρ with |Supp(Wρ)| ≤
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n |V | (d = 3) |V | (d = 5) |V | (d = 7)
1 9 25 49
2 81 625 2 401
3 729 15 625 117 649
4 6561 390 625 5 764 801
5 59 049 9 765 625 282 475 249

(a) d odd.
n |V | (m = 0) |V | (m = 1) |V | (full) 22n

1 6 8 8 4
2 60 240 432 16
3 1 080 10 080 71 136 64
4 36 720 734 400 90 494 400 256
5 2 423 520 100 172 160 1 424 082 031 488 1024

(b) d = 2.

Table 3.1: The cardinality of the multiqudit phase space for different num-
bers n of qudits and different local Hilbert space dimensions d. (a) The
cardinality of the phase space when d is odd is d2n. (b) When d = 2 the
cardinality of phase space is larger than 22n. Here the second column is
the number of stabilizer states (phase points corresponding to cnc sets
of the form Eq. (3.5) with m = 0), the third column is the size of the
phase space obtained using only maximal cnc sets with m = 1, the fourth
column is the size of the full multiqubit phase space.

22n. That is, no more than 22n phase space points are required in the optimal

representation of any positively representable state. This follows immediately from

Caratheodory’s theorem [71, §1.6].

A similar result holds for states which are not positively representable.

Lemma 11 For any n ∈ N and any n-qubit state ρ , there is a Wigner function

Wρ(Ω,γ) that minimizes the robustness Eq. (3.24) with |Supp(Wρ)| ≤ 22n.

Proof of Lemma 11. The phase space robustness R(ρ) of a state ρ is defined

as the solution to the convex optimization problem

min
q
{||q||1 |Mq = b}

71



where Mi j = Tr(Aα j Tai), bi = Tr(ρTai), {Aα j | 1 ≤ j ≤ |V |} is an enumeration of

the phase point operators, and
{

Tai | 1≤ i≤ 22n
}

are the n-qubit Pauli operators.

For each variable q j in this optimization problem, we can define two new variables,

q+j = max(0,q j), and q−j = max(0,−q j). Then the robustness can equivalently be

defined as the solution to the standard form linear program

min
q

{
∑

j
q+j +q−j

∣∣∣∣ M̃q̃ = b, q̃≥ 0

}
(3.26)

where M̃ =
[
M −M

]
and q̃ =

[
q+

q−

]
. Since this program is feasible (any physical

state can be written as an affine combination of phase point operators) and bounded

(no physical state can have robustness less than 1), by the fundamental theorem of

linear programming, Eq. (3.26) has a solution at a vertex of the feasible polytope.

Since M̃ in Eq. (3.26) has dimensions 22n×2|V |, this means there is a solution to

Eq. (3.26) where q̃ has no more than 22n nonzero entries [72, §13.1,13.2]. �

With this lemma, we recover a familiar feature of the original discrete phase

space.
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Chapter 4

A hidden variable model for
quantum computation on qubits

The quasiprobability representation described in Chapter 3 goes a long way to-

ward unifying several quasiprobability representations of finite-dimensional quan-

tum mechanics, including the odd-dimensional Wigner function [1, 32, 53], the

eight state model [62], and the quasiprobability representation based on stabilizer

states [64]. The conventional wisdom is that for any quasiprobability representa-

tion, negativity, either in the states or in the dynamics, is necessary to accurately

represent quantum theory [35, 74–77]. It turns out that a hidden variable model can

be constructed for universal quantum computation with magic states on qubits in

which all elements of computation—all states, operations, and measurements—are

represented using only classical probabilities—no negativity is needed [3].

The existence of this model is unintuitive. It defies precedents established by

previous quasiprobability representations. Further, there are several no-go theo-

rems suggesting that a model of this form shouldn’t exists.

In this chapter, we will review the construction of this hidden variable model.

We will present a classical simulation algorithm for quantum computation with

magic states based on the hidden variable model. And finally, we will conclude

with an explanation for why the construction works. We defer the discussion of the

relation of this model to no-go theorems to Chapter 5. The main theorem of this

chapter is Theorem 6 which formally defines the hidden variable model.
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4.1 Definition of the hidden variable model

Let O(2n) denote the trace-1 affine subspace of the vector space of 2n-dimensional

Hermitian matrices and let S denote the set of pure n-qubit stabilizer states repre-

sented as density matrices. The hidden variable model is based on the set

Λ := {X ∈ O(2n) | Tr(σX)≥ 0, ∀σ ∈S }. (4.1)

These are the allowed “states” of the hidden variable model. The elements of Λ

are Hermitian operators with unit trace much like density operators. Unlike den-

sity operators, they are not necessarily positive semidefinite. This set was studied

previously in a different context in Ref. [78]. Therein, the author considers the

relation of this set to the stabilizer polytope and to contextuality.

When interpreted as a subset of the real affine space O(2n), the set Λ has several

convenient geometric and topological properties, two of which are formalized in

the following lemma:

Lemma 12 For any number of qubits n ∈N, (i) Λ is convex, and (ii) Λ is compact.

Proof of Lemma 12. Convexity of Λ follows immediately from the definition.

For compactness, since Λ is a subset of a real vector space, by the Heine-Borel

theorem [79, Theorem 2.41] it suffices to prove that Λ is closed and bounded.

Closure of Λ also follows immediately from the definition. Finally, the inequalities

that define Λ imply that Λ is contained in the hypercube {X ∈O(2n) | Tr(Πa,sX)≥
0 ∀a ∈ E \{0},s ∈ Z2}. Therefore, Λ is bounded. �

As a set in a real vector space, Λ is defined as the intersection of a finite num-

ber of halfspaces, i.e. Λ is a convex polyhedral set. As shown in Lemma 12, Λ

is compact, and so it is a convex polytope. Therefore, by the Minkowski-Weyl

theorem [71, §1.1], an equivalent description of Λ is as the convex hull of finitely

many vertices. We denote the set of vertices of the polytope by A with elements

Aα ∈A . The index set for the vertices is denoted V with α ∈V ⇔ Aα ∈A . Then,

Λ = ConvHull{Aα | α ∈ V }.
The hidden variable model is similar in structure to the hidden variable models

based on the odd-dimensional Wigner function described in Section 2.4 and the
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A+++

A++−

A+−+

A+−−

A−++

A−+−

A−−+

A−−−

Figure 4.1: For one qubit, the polytope
Λ is a cube inscribing the Bloch
sphere. In the definition of Λ

there is an inequality for each of
the six one-qubit stabilizer states.
These define the six faces of the
cube. The eight vertices the cube
are the eight phase point opera-
tors of the eight-state model.

generalized Wigner function of Chapter 3. It is based on a finite set of Hermitian

operators (phase point operators) which we associate with points in a generalized

phase space. Here, we take the index set V to be the generalized phase space and

the vertices Aα ∈A are the generalized phase point operators.

An illustration of the polytope Λ for one qubit is shown in Figure 4.1. On one

qubit, this hidden variable model is equivalent to the model defined in Chapter 3.

This is not true in general. It turns out that for any number of qubits, the phase

point operators Aγ

Ω
defined in chapter 3 are vertices of Λ (see the Supplementary

Material of Ref. [3] for the proof), but in general there are more vertices of Λ than

there are generalized phase point operators Aγ

Ω
.

The generalized phase space considered here has properties similar to those

that made the phase spaces defined in section 2.4 and Chapter 3 useful for describ-

ing quantum computation with magic states. For example, we have the following

lemma:

Lemma 13 For any number of qubits n ∈ N, Λ has the following properties:

1. For any X ∈ Λ and any Clifford unitary U ∈ C `, UXU† ∈ Λ,

2. For any X ∈ Λ, any a ∈ E, and any s ∈ Z2, if Tr(Πa,sX)> 0 then

X ′ :=
Πa,sXΠa,s

Tr(Πa,sX)
∈ Λ,
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3. For any density matrix ρ representing a physical n-qubit quantum state, ρ ∈
Λ. That is, Λ contains every 2n-dimensional positive-semidefinite Hermitian

matrix with unit trace.

Proof of Lemma 13. To prove that a 2n-dimensional Hermitian operator is in

Λ, we have to check two properties: (i) that it has unit trace (i.e. that it is in

O(2n)), and (ii) that the Hilbert-Schmidt inner product with every stabilizer state is

nonnegative. We will prove the three properties of Λ listed above in order. (1.) Let

U ∈ C ` be a Clifford unitary and X ∈ Λ. Clifford unitaries map stabilizer states

to stabilizer states under conjugation [4, §10.5.2]. Therefore, for any σ ∈S , we

have Tr(UXU†σ) = Tr(XU†σU) = Tr(Xσ ′)≥ 0 where the last inequality follows

from the fact that σ ′ ∈S and X ∈ Λ. Also, Tr(UXU†) = Tr(XU†U) = Tr(X) = 1.

Therefore, UXU† ∈ Λ.

(2.) Let a ∈ E, s ∈ Z2, and X ∈ Λ and suppose that Tr(XΠa,s) > 0. Then for

any stabilizer state σ ∈S , we have

Tr(Πa,sXΠa,sσ) = Tr(XΠa,sσΠa,s) = c ·Tr(Xσ
′)

with c ≥ 0 and σ ′ ∈S . In particular, c = 1 if (−1)sTa is in the stabilizer group

of σ , c = 0 if (−1)s+1Ta is in the stabilizer group of σ , and c = 1
2 otherwise [4,

§10.5.3]. Therefore, since X ∈Λ, Tr(X ′σ)≥ 0, ∀σ ∈S . We also have Tr(X ′) = 1

by definition so X ′ ∈ Λ.

(3.) Any density matrix ρ corresponding to a physical quantum state has unit

trace and has nonnegative probabilities associated with stabilizer measurements.

I.e. Tr(ρσ)≥ 0 for any stabilizer state σ ∈S . Therefore, for any n-qubit density

matrix ρ , ρ ∈ Λ. �

The first two properties show that the polytope Λ is closed under the dynami-

cal operations of quantum computation with magic states—Clifford unitaries and

Pauli measurements. These are the key properties, shared by the previously de-

fined phase spaces, that allow the phase space to describe quantum computation

(c.f. Lemma 2 and Theorem 3). The third property sets this phase space apart

from the previous phase spaces. For vertices of Λ, property 1 of Lemma 13 can be

refined:
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Lemma 14 Vertices of Λ map to vertices under conjugation by Clifford unitaries.

That is, for any number of qubits n ∈ N, any Clifford unitary U ∈ C `, and any

vertex Aα ∈A of Λ, AU ·α :=UAαU† is a vertex of Λ.

Proof of Lemma 14. For a vertex Aα ∈ A of Λ, define the set Sα = {σ ∈
S | Tr(Aασ) = 0}. Aα is the unique solution in O(2n) to the system of equations

Tr(Y σ) = 0, ∀σ ∈ Sα .

In this way, the vertices Aα of Λ are uniquely specified by sets of stabilizer states

Sα [80, §18].

Consider a set of stabilizer states S⊂S and a Clifford unitary U ∈ C `. There

is an action of U on the set S defined by U ·S= {UσU† |σ ∈ S}. Under conjugation

by U , solutions in O(2n) of the system

Tr(Y σ) = 0, ∀σ ∈ S

are mapped bijectively to solutions of the system

Tr(Y σ) = 0, ∀σ ∈U−1 ·S

since Tr(UYU†) = Tr(YU†U) = Tr(Y ) and Tr(UYU†σ) = Tr(Y (U†σU)). There-

fore, if Sα is a set of stabilizer states specifying a vertex Aα of Λ, i.e. Aα is the

unique solution to the system of equations derived from Sα ⊂ S , then AU ·α :=

UAαU† is the unique solution to the system of equations derived from U−1 ·Sα ⊂
S . Then since UAαU† ∈ Λ by property 1. of Lemma 13, AU ·α is a vertex of Λ. �

The hidden variable model for quantum computation with magic states on

qubits is formally defined by the following theorem.

Theorem 6 For any number of qubits n ∈N, (i) each n-qubit quantum state ρ can

be represented by a probability function pρ : V → R≥0,

ρ = ∑
α∈V

pρ(α)Aα . (4.2)

(ii) Under the action of the Clifford group, V is mapped to itself, and the proba-

77



bility function pρ transforms covariantly. That is, for any state ρ and any Clifford

unitary U ∈ C `, the state UρU† can be represented by the probability function

defined by

pUρU†(α) = pρ(U−1 ·α). (4.3)

(iii) For state update under Pauli measurements it holds that

Πa,sAαΠa,s = ∑
β∈V

qα,a(β ,s)Aβ . (4.4)

For all a ∈ E, α ∈ V , the qα,a : V ×Z2→ R≥0 are probability functions. (iv) De-

note by Pρ,a(s) the probability of obtaining outcome s for a measurement of Ta on

the state ρ . Then, the Born rule Pρ,a(s) = Tr(Πa,sρ) takes the form

Tr(Πa,sρ) = ∑
α∈V

pρ(α)Qa(s |α) (4.5)

where Qa(s |α) is given by

Qa(s |α) := ∑
β∈V

qα,a(β ,s). (4.6)

Hence 0≤ Qa(s |α)≤ 1, for all a,s,α .

Proof of Theomem 6. We will consider the four statemensts of the theorem in

order. First, property (3.) of Lemma 13 shows that for any n-qubit density matrix

ρ , ρ ∈Λ. Therefore, by the Krein-Milman theorem, ρ can be expressed as a convex

combination of the vertices of Λ as in Eq. (4.2). This proves the first statement.

Second, let U ∈ C ` be a Clifford unitary. Lemma 14 shows that for a vertex

Aα of Λ, UAαU† =: AU ·α is also a vertex of Λ. Now consider a state ρ with an

expansion Eq. (4.2). We have

UρU† = ∑
α∈V

pρ(α)UAαU†

= ∑
α∈V

pρ(α)AU ·α

= ∑
α∈V

pρ(U−1 ·α)Aα .
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(a) Update under Clifford Unitary H (b) Update under Pauli Z measurement

Figure 4.2: Update rules for the vertices of Λ for one qubit under (a) the Clif-
ford unitary H and (b) a Pauli Z measurement. Under the Clifford uni-
tary, the update is deterministic. It amounts to a permutation of the
vertices of Λ. Under the Pauli measurement, the update is probabilistic.
Each red arrow in the figure on the right represents a transition proba-
bility of 1/2.

Here in the second line we use Lemma 14 and in the third line a relabeling of the

terms in the sum. Comparing this expression with Eq. (4.2), since pρ(α) is a valid

probability function describing ρ , this shows that pρ(U−1 ·α) is a valid probability

function describing UρU†.1

For (iii), consider a projector Πa,s and phase point operator Aα with Tr(Πa,sAα)>

0. Since X ′ :=Πa,sAαΠa,s/Tr(Πa,sAα)∈Λ as shown in property (2.) of Lemma 12,

X ′ can be expanded as a convex combination of the vertices A . Therefore,

Πa,sAαΠa,s = ∑
β∈V

qα,a(β ,s)Aβ ,

with qα,a(β ,s)≥ 0 for all β ∈ V and s ∈ Z2. Fixing α and a and adding the above

1Note that in general the probability function pρ is not unique for any given state. This property
does not say that pρ (U−1 ·α) is the unique probability function describing UρU†, only that it is a
valid probability function describing UρU†.
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equations for s = 0 and s = 1, then taking a trace we get

∑
s∈Z2

∑
β∈V

qα,a(β ,s) = 1.

Therefore, qα,s : V ×Z2→R≥0 is a probability distribution for any α ∈ V and any

a ∈ E.

Finally, for statement (iv) we calculate

Tr(Πa,sρ) = ∑
α∈V

pρ(α)Tr(Πa,sAα)

= ∑
α∈V

pρ(α)Tr(Πa,sAαΠa,s)

= ∑
α∈V

pρ(α) ∑
β∈V

qα,a(β ,s)

= ∑
α∈V

pρ(α)Qa(s |α).

Here in the first line we use the expansion of ρ , Eq. 4.2, in the third line Eq. (4.4),

and in the fourth line the definition of Qa(s |α). This proves the formulation of the

Born rule in the hidden variable model. �

This theorem effectively defines a hidden variable model capable of represent-

ing all elements of quantum computation with magic states using only classical

(nonnegative) probabilities. States are represented by probability distributions over

the vertices of Λ and the dynamics of QCM are represented by transition proba-

bilities between the vertices. Although this representation is similar in structure

to quasiprobability representations like the discrete Wigner functions in previous

chapters (the discussion of contextuality and the SW correspondence mirrors that

of the generalized Wigner function of Chapter 3 given in Section 3.6), it is set

apart from other quasiprobability representations by the fact that no negativity is

needed—it is a probability representation. This shows that, in general, the pres-

ence or absence of negativity depends on the particular choice of quasiprobability

representation, and that to represent universal quantum computation, no negativity

is required.
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4.2 A classical simulation algorithm for universal
quantum computation with magic states on qubits

The hidden variable model described by Theorem 6 has a probabilistic represen-

tation for the dynamical elements of QCM: Clifford unitaries and Pauli measure-

ments. This, together with the probabilistic representation of states, is all we need

to construct a classical simulation algorithm for quantum computation with magic

states like those based on the discrete Wigner functions in the previous chapters.

The simulation algorithm is given in Algorithm 4.1. Whereas Algorithm 2.1 and

Algorithm 3.1 applied only for the strict subset of input states for which the Wigner

function was nonnegative, in this case all states are positively representable. There-

fore, the classical simulation algorithm, Algorithm 4.1, can be used to simulate any

QCM circuit on any n-qubit input state.

Input: pρin

1: sample a point α ∈ V according to the probability distribution pρin

2: while end of circuit has not been reached do
3: if a Clifford unitary U ∈ C ` is encountered then
4: update α ←U ·α
5: end if
6: if a Pauli measurement Ta, a ∈ E is encountered then
7: sample (β ,s) ∈ V ×Z2 according to qα,a(β ,s)
8: Output: s
9: update α ← β

10: end if
11: end while

Algorithm 4.1: One run of the classical simulation algorithm for quantum
computation with magic states on qubits based on the hidden vari-
able model defined by Theorem 6. The algorithm provides samples
from the joint probability distribution of the Pauli measurements
in a circuit consisting of Clifford unitaries and Pauli measurements
applied to the input state ρin.

Theorem 7 For any n ∈ N and any n-qubit quantum state ρin, the classical simu-

lation algorithm of Algorithm 4.1 for sampling the outcomes of the Pauli measure-

ments in a circuit consisting of Clifford unitaries and Pauli measurements applied
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to input state ρin agrees with the predictions of quantum mechanics.

Proof of Theorem 7. Without loss of generality, a QCM circuit can be repre-

sented as a sequence U1,a1,U2,a2, . . . with U1,U2, · · · ∈ C ` representing the Clif-

ford unitaries to be applied and a1,a2, · · · ∈ E representing the Pauli measurements

to be performed. Consider a single layer of the a circuit of this form: a Clifford

unitary U followed by a Pauli measurement Ta on input state ρ . Using the classical

simulation algorithm, the conditional probability of obtaining outcome s for the

measurement given the state Aα ∈ A is Qa(s |U ·α). Therefore, the probability

of obtaining outcome s given a measurement of Ta on state ρ as predicted by the

classical simulation algorithm is

P(Sim)
ρ,U,a(s) = ∑

α∈V
pρ(α)Qa(s |U ·α). (4.7)

The outcome probability predicted by the Born rule, P(QM)
ρ,U,a (s), is

Tr
(
Πa,sUρU†)= ∑

α∈V
pρ(α)Tr(Πa,sUAαU†)

= ∑
α∈V

pρ(α)Tr(Πa,sAU ·α)

= ∑
α∈V

pρ(α)Qa(s |U ·α). (4.8)

Here in the first line we use the expansion of ρ , Eq. (4.2), in the second line we

use Lemma 14, and in the third line Eqs. (4.4) and (4.6). Comparing Eq. (4.7) and

Eq. (4.8), we see that the classical simulation algorithm reproduces the outcome

probabilities predicted by the Born rule for a single layer of a QCM circuit.

Now we turn the the postmeasurement state ρ ′. The postmeasurement state

predicted by quantum mechanics is

ρ
′(QM) =

Πa,sUρU†Πa,s

Tr(Πa,sUρU†)
.
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Here the numerator is

Πa,sUρU†
Πa,s = ∑

α∈V
pρ(α)Πa,sUAαU†

Πa,s

= ∑
α∈V

pρ(α)Πa,sAU ·αΠa,s

= ∑
α∈V

pρ(α) ∑
β∈V

qU ·α,a(β ,s)Aβ ,

and so

ρ
′(QM) =

∑α pρ(α)∑β qU ·α,a(β ,s)Aβ

∑α pρ(α)Qa(s |U ·α)
. (4.9)

Using the classical simulation algorithm, the probability of obtaining outcome

s and state Aβ given a Clifford unitary U followed by measurement of Ta on state ρ

is Pρ,U,a(β ,s) = Pρ,U,a(β |s)Pρ,U,a(s). But Pρ,U,a(β ,s) = ∑α pρ(α)PU,a(β ,s|α) =

∑α pρ(α)qU ·α,a(β ,s) and Pρ,U,a(β |s) = pρ ′(β ). Therefore, the postmeasurement

state according to the classical simulation algorithm is

ρ
′(Sim) = ∑

β∈V
pρ ′(β )Aβ = ∑

β∈V

Pρ,U,a(β ,s)
Pρ,U,a(s)

Aβ

= ∑
β∈V

∑α pρ(α)qU ·α,a(β ,s)
∑α pρ(α)Qa(s |U ·α)

Aβ . (4.10)

This agrees with Eq. (4.9) above. Therefore, the classical simulation algorithm

also reproduces the postmeasurement state predicted by quantum mechanics for a

single layer of a QCM circuit.

Now let ρ(t) denote the state after t− 1 layers of the circuit. Then the above

shows that the classical simulation algorithm correctly reproduces the Born rule

probabilities Pρ,Ut ,at (st |s1,s2, . . . ,st−1) as well as the post-measurement state ρ(t+

1). Therefore, by induction the simulation algorithm correctly reproduces the out-

come probabilities predicted by the Born rule for any QCM circuit. �

Although this classical simulation algorithm can be used to simulate any quan-

tum computation, in contrast to the earlier algorithms of Sections 2.6 and 3.5,

we have not proved the computational efficiency of the Algorithm 4.1. In fact,

if it were efficient then all quantum computation could be efficiently classically
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simulated, and there could be no quantum computational speedup. If a quantum

computational speedup exists, as is widely assumed, then this classical simulation

algorithm cannot be efficient for arbitrary quantum computations.

A proof of efficiency would require we prove that the algorithm satisfies the

four efficiency criteria (E0)–(E3) defined in Section 2.6. If, as we strongly suspect,

Algorithm 4.1 is not efficient in general, then at least one of these criteria must fail.

Inefficiency in classical simulation must come from a source other than negativity

in the representation of the input state. This inefficiency could come from difficulty

in obtaining samples from the probability function defining the input state, from

inefficient update rules under Clifford unitaries and/or Pauli measurements, or from

an inability to even specify a phase space point with a polynomial number of bits.

4.3 A����XXXXquasi-probability representation for quantum
computation with magic states

The existence of the hidden variable model defined by Theorem 6 is unintuitive. It

allows any quantum computation—and therefore by extension all finite-dimensional

quantum mechanics—to be described using only classical probabilities. All states

are represented by probability distributions over a finite set of elements and the

formulation of the Born rule in Eq. (4.5) has the form of a law of total probability.

The dynamics described by Lemma 14 and Eq. (4.4) look like the transition matrix

dynamics of a finite Markov process. In this section we will attempt to provide an

explanation for where the hidden variable comes from and why the construction

works.

Before continuing we need to introduce some nomenclature and notation for

some classes of quantum circuits.

Definition 4 A stabilizer circuit is a quantum circuit consisting of only Clifford

unitaries and Pauli measurements. A stabilizer circuit is represented by a sequence

CS = (U1,a1,U2,a2, . . .) with U1,U2, · · · ∈ C ` specifying Clifford unitaries to be

applied and a1,a2, · · · ∈ E specifying the Pauli measurements to be performed.

Denote by CS the set of all stabilizer circuits.

This is the most general kind of quantum circuit allowed within the QCM
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framework with all free operations in the resource theory of stabilizer quantum

computation [42] accessible. Stabilizer circuits applied to magic input states allow

for universal quantum computation as shown in Section 2.2. Note that since adap-

tivity is allowed in QCM, a measurement a j or a unitary U j is not necessarily fixed

in advance, they could be functions of the outcomes of the prior measurements.

That is, if the outcomes of the first j− 1 measurements are s1,s2, . . . ,s j−1 ∈ Z2,

then U j is a map from (s1,s2, . . . ,s j−1) to C ` and a j is a map from (s1,s2, . . . ,s j−1)

to E.

Definition 5 A Pauli circuit is a circuit consisting of a sequence of (not necessarily

commuting) Pauli measurements. A Pauli circuit is represented by a sequence CP =

(a1,a2, . . .) with a1,a2, · · · ∈ E labeling the measurements to be performed. Denote

by CP the set of all Pauli circuits.

Again, adaptivity allows the measurements chosen to be conditioned on the

outcomes of prior measurements. Any Pauli circuit can be identified with a stabi-

lizer circuit in which each Clifford unitary in the circuit is the identity. With this

identification we have the inclusion CP ⊂ CS.

Definition 6 A commuting circuit is a Pauli circuit in which the measurements

pairwise commute. Denote by CI the set of all commuting circuits with elements

CI ∈ CI .

The “I” in CI is for instantaneous as this can be seen as an analogue in the

magic state model of the quantum complexity class IQP (Instantaneous Quantum

Polynomial time circuits) [81].

Definition 7 For a circuit CS ∈ CS (resp. CP ∈ CP, CI ∈ CI), an effect of the circuit

is a pair (CS,s) (resp. (CP,s), (CI,s)) where s ∈ Z∗2 is a binary string labeling a

possible sequence of outcomes of the measurements performed in the circuit. The

set of all effects, denoted by ES (resp. EP, EI) is the subset of CS×Z∗2 where the

length of the outcome sequence matches the number of measurements.2

2Since circuits can be adaptive—gates and measurements can depend on the outcomes of prior
measurements—not every effect corresponding to a given circuit need have outcome sequences
s ∈ Z∗2 of the same length and not every outcome sequence of any given length will necessarily
correspond to a valid effect.

85



For an effect (CS,s) of a circuit CS ∈ CS corresponding to measurement out-

comes s = (s1,s2, . . . ,sN) ∈ ZN
2 , we can define the operator

Π(CS,s) := ΠaN ,sNUN · · ·Πa2,s2U2Πa1,s1U1. (4.11)

The corresponding operators for circuits CP ∈ CP and CI ∈ CI are defined similarly

except without the Clifford unitaries. It can be easily shown that, according to the

Born rule, the probability of obtaining measurement outcomes s for the measure-

ments of a circuit CS ∈ CS applied to an input state ρ is given by

Tr
(
Π(CS,s)ρΠ(CS,s)†) . (4.12)

An analogous statement holds for Pauli circuit and for commuting circuits.

All three classical simulation algorithms for quantum computation with magic

states discussed in this thesis so far, Algorithms 2.1, 3.1, and 4.1, apply to a set

of input “states” which forms a polytope in the space O(dn). In the case of Al-

gorithm 4.1, the polytope is Λ defined in Eq. (4.1). In the cases of the simulation

algorithms based on the discrete Wigner functions, the corresponding polytopes

are the convex hulls of the phase point operators, ConvHull{Au | u ∈V} for Algo-

rithm 2.1 and ConvHull
{

Aγ

Ω
| (Ω,γ) ∈ V

}
for Algorithm 3.1.

The fundamental properties that these polytopes share that allow them to spawn

classical simulation algorithms for quantum computation are:

1. States in these polytopes give valid probabilities associated with all Pauli

measurements. That is, for any X ∈Λ, a∈ E, and s∈Zd , 0≤ Tr(Πa,sX)≤ 1.

2. The polytopes map back into themselves under Clifford unitaries and Pauli

measurements. That is, for any X ∈ Λ, U ∈ C `, a ∈ E, and s ∈ Zd , we have

UXU† ∈ Λ, and if Tr(Πa,sX)> 0 then X ′ := Πa,sXΠa,s/Tr(Πa,sX) ∈ Λ.

The first property is proven in Lemma 1, Lemma 8, and Theorem 6 part (iv) for

the cases considered here. This allows us to extract the expectation values for

single Pauli measurements from the Wigner/probability function representation of

the state.

The second property, by the Krein-Milman theorem, gives the probabilistic

update rules under the dynamics of QCM circuits like those in Lemmas 1, 7, and 8,
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and in Theorem 6 parts (ii) and (iii). This allows the process above to be iterated

to give expectation values for all Pauli measurements in a QCM circuit.

It can easily be shown that the largest subset of O(2n) satisfying these two

properties is the set

Λ̃ =
{

X ∈ O(2n) | Tr
(
Π(CS,s)XΠ(CS,s)†)≥ 0 ∀(CS,s) ∈ ES

}
. (4.13)

That is, Λ̃ satisfies these two properties, and for any set Ω⊂O(2n) satisfying these

two properties, Ω ⊂ Λ̃. Therefore, any polytope in O(2n) that could be used to

derive a classical simulation algorithm like those given above for QCM must be

contained in Λ̃. Also, clearly, Λ̃ contains all physical states.

The set Λ̃ has an obvious connection to quantum computation with magic

states. It is simply the set of “states” which give valid (nonnegative) probabili-

ties for all effects of stabilizer circuits. It is not however obvious that Λ̃ can be

used to define a hidden variable model like that of Theorem 6, since it is defined as

the intersection of an infinite number of halfspaces. Therefore, it is not obvious that

it has a finite number of extreme points for any number of qubits n ∈ N. The sur-

prising aspect of the existence of the hidden variable model defined in Theorem 6

is entirely captured by the following theorem.

Theorem 8 Λ̃ = Λ.

The rest of this section is devoted to proving this theorem. The proof of Theo-

rem 8 requires several lemmas. First,

Lemma 15 For any effect (CS,s) ∈ ES, there is an effect (CP, t) ∈ EP such that for

any X ∈ O(2n),

Tr
(
Π(CS,s)XΠ(CS,s)†)= Tr

(
Π(CP, t)XΠ(CP, t)†) .

Lemma 15 is a result of the fact that in the model of quantum computation

with magic states the Clifford unitaries are redundant. Any stabilizer circuit is

equivalent to a circuit consisting of only Pauli measurements and so the Pauli mea-

surements alone are sufficient for universal quantum computation. The proof of
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this fact is given in Ref. [38, §IV.A.]. We reproduce the relevant aspect of the proof

here.

Proof sketch of Lemma 15. For a stabilizer effect (CS,s) ∈ ES, consider the

operator

Π(CS,s) = ΠaN ,sNUN · · ·Πas,s2U2Πa1,s1U1.

with U1,U2, · · · ∈C `, a1,a2, · · · ∈E, and s1,s2, · · · ∈Z2. Since Clifford unitaries are

defined as the set of unitary operations that map Pauli operators to Pauli operators

under conjugation, the Clifford unitaries in this operator can be propagated to the

left giving the equivalent operator

Π(CS,s) =UΠāN ,s̄N · · ·Πā2,s̄2Πā1,s̄1

with U ∈ C `, ā1, ā2, · · · ∈ E, and s̄1, s̄2, · · · ∈ Z2. Then

Tr
(
Π(CS,s)XΠ(CS,s)†)= Tr

(
UΠāN ,s̄N · · ·Πā2,s̄2Πā1,s̄1XΠā1,s̄1Πā2,s̄2 · · ·ΠāN ,s̄NU†)

= Tr
(
ΠāN ,s̄N · · ·Πā2,s̄2Πā1,s̄1XΠā1,s̄1Πā2,s̄2 · · ·ΠāN ,s̄NU†U

)
= Tr

(
Π(CP, t)XΠ(CP, t)†)

where (CP, t)∈EP is the effect corresponding to the circuit CP =(ā1, ā2, . . .) giving

outcomes s̄1, s̄2, . . . , s̄N . �

Lemma 16 For any effect (CP,s) ∈ EP, there exists a set of coefficients c(CI, t)
with c(CI, t) ≥ 0 ∀(CI, t) ∈ EI and ∑(CI ,t) c(CI, t) = 1 such that for any X ∈ O(2n)

we have

Tr
(
Π(CP,s)XΠ(CP,s)†)= ∑

(CI ,t)∈EI

c(CI, t)Tr
(
Π(CI, t)XΠ(CI, t)†) .

The proof of Lemma 16 requires the following additional lemma:

Lemma 17 Let Ta be a Pauli observable and

S = 〈(−1)γ(a1)Ta1 ,(−1)γ(a2)Ta2 , . . . ,(−1)γ(am)Tam〉

be a stabilizer group. Suppose that Ta does not commute with one of the generators
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Tak . Then there exists a n-qubit Clifford unitary U ∈C ` such that USU† and UTaU†

act only on qubits 1,2, . . . ,m.

Proof of lemma 17. The stabilizer group S can be identified with an isotropic

subspace Ĩ = 〈a1,a2, . . . ,am〉 ⊂ E with corresponding noncontextual value assign-

ment γ : Ĩ → Z2. Without loss of generality, we can assume that [a1,a] 6= 0 and

[ak,a] = 0 for k ∈ {2, . . . ,m}. By Witt’s lemma [68, §20], the linear map that sends

a j to z j for 1≤ j ≤m and a to x1 can be extended to a symplectic map M : E→ E.

Then since Sp(2n,Z2) ' C `/P , there exists a Clifford unitary U ∈ C ` such that

UTbU† =±TMb for all b ∈ E. In particular, UTaU† =±Tx1 and UTa jU
† =±Tz j . �

Proof of Lemma 16. We will prove by induction that for any effect (CP,s)∈ EP

and any X ∈ O(2n),

Π(CP,s)XΠ(CP,s)† = ∑
(CI ,t)∈EI

c(CI, t)U(CI, t)Π(CI, t)XΠ(CI, t)†U(CI, t)† (4.14)

with U(CI, t) ∈ C `, c(CI, t) ≥ 0 ∀(CI, t) ∈ EI , and ∑(CI ,t) c(CI, t) = 1. The base

case is where CP consists of a single Pauli measurements. In this case CP ∈ CI so

Eq. (4.14) holds trivially.

Suppose Eq. (4.14) holds for any effect (CP,s) up to depth D. For any effect(
C(D+1)

P , s̃
)

of depth D+1, Π

(
C(D+1)

P , s̃
)
= Πa,sΠ

(
C(D)

P ,s
)

where
(

C(D)
P ,s

)
has

depth D. Then

Π

(
C(D+1)

P , s̃
)

XΠ

(
C(D+1)

P , s̃
)†

= Πa,sΠ

(
C(D)

P ,s
)

XΠ

(
C(D)

P ,s
)†

Πa,s

= ∑
(CI ,t)∈EI

c(CI, t)Πa,sU(CI, t)Π(CI, t)XΠ(CI, t)†U(CI, t)†
Πa,s. (4.15)

A generic term in this sum, up to a nonnegative constant factor, has the form

Πa,sUΠ(CI, t)XΠ(CI, t)†U†
Πa,s (4.16)

with (CI, t) ∈ EI , a ∈ E, s ∈ Z2, and U ∈ C `. Consider the operator Πa,sUΠ(CI, t).
Since Clifford group operations are defined by the property that they map Pauli

operators to Pauli operators under conjugation, the unitary U can be propagated to
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the other side of the projector Πa,s giving a different projector:

Πa,sUΠ(CI, t) =UΠa′,s′Π(CI, t). (4.17)

Now we have four cases:

Case (1): If (−1)s′Ta′ is an element of the stabilizer group S= 〈(−1)t1Tb1 ,(−1)t2Tb2 , . . .〉
corresponding to the effect (CI, t) where b1,b2, · · · ∈ E are the measurements in the

circuit CI and t1, t2, · · · ∈ Z2 are the measurement outcomes, then

UΠa′,s′Π(CI, t) =UΠ(CI, t).

Case (2): If (−1)s′+1Ta′ is an element of the stabilizer group S, then

UΠa′,s′Π(CI, t) = 0.

Case (3): If Ta′ commutes with Tb1 ,Tb2 , . . . but neither of the conditions re-

quired for case (1) or case (2) hold, then

UΠa′,s′Π(CI, t) =UΠ(C′I,(t,s
′))

where (C′I,(t,s′)) ∈ EI and C′I ∈ CI is the circuit obtained by appending the mea-

surement a′ to the circuit CI .

Case (4): The last case is where Ta′ anticommutes with at least one element of

S. In this case, by lemma 17, there exists a Clifford unitary V ∈ C ` such that

V Πa′,s′V † = Πã,s̃⊗ In−m and V Π(CI, t)V † = Π(C̃I, t̃)⊗ In−m

where Πã,s̃ and Π(C̃I, t̃) act only on the first m qubits where m is the dimension of

the isotropic subspace corresponding to the stabilizer group S. Π(C̃I, t̃) is a product

of m pairwise commuting Pauli projectors acting on m qubits, i.e., it is a projection

onto a stabilizer state so it can be written as Π(C̃S, t̃) = |σ〉〈σ | for some m-qubit
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stabilizer state |σ〉. Then

UΠa′,s′Π(CI, t) =UΠa′,s′V †V Π(CI, t)

=UV †(Πã,s̃⊗ In−m)(|σ〉〈σ |⊗ In−m)V

=UV †(Πã,s̃ |σ〉〈σ |⊗ In−m)V.

Since Tã anticommutes with an element of the stabilizer of the stabilizer state
|σ〉, a measurement of Tã on the state |σ〉 would yield 0 or 1 with equal probability

and the postmeasurement state is another stabilizer state depending on the outcome

of the measurement [4, §10.5.3]. Therefore, Πã,s̃ |σ〉= 1√
2
|σs̃〉 for some m-qubits

stabilizer state |σs̃〉. Since the Clifford group acts transitively on the set of stabilizer

states, there exists a m-qubit Clifford group operation W such that W |σ〉 = |σs̃〉.
Then we have

UΠa′,s′Π(CI, t) =
1√
2

UV †(|σs̃〉〈σ |⊗ In−m)V

=
1√
2

UV †(|σs̃〉〈σ |W †W ⊗ In−m)V

=
1√
2

UV †(|σs̃〉〈σs̃|⊗ In−m)(W ⊗ In−m)V.

Finally, the n-qubit Clifford group operations (W ⊗ In−m) and V can be prop-

agated to the other side of the projector giving another projector Π(C̄I, t̄) with

C̄I ∈ CI . I.e.

UΠa′,s′Π(CI, t) =
1√
2

UV †(W ⊗ In−m)V Π(C̄I, t̄). (4.18)

To summarize,

UΠa′,s′Π(CI, t) =


UΠ(CI, t) if (−1)s′Ta′ ∈ S

0 if (−1)s′+1Ta′ ∈ S

UΠ(C′I,(t,s′)) if [Ta′ ,S] = 0 and ±Ta′ 6∈ S
1√
2
UV †(W ⊗ In−m)V Π(C̄I, t̄) otherwise.

(4.19)
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Putting this back into Eq. (4.15), we can see that Π

(
C(D+1)

S

)
can be written in the

form Eq. (4.14). Thus, by the principle of induction, Eq. (4.14) holds for any effect

of any Pauli circuit CP ∈ CP.

Taking a trace of eq. (4.14), we get

Tr
(
Π(CP,s)ρΠ(CP,s)†)= ∑

(CI ,t)∈EI

c(CI, t)Tr
(
U(CI, t)Π(CI, t)XΠ(CI, t)†U(CI, t)†)

= ∑
(CI ,t)∈EI

c(CI, t)Tr
(
Π(CI, t)XΠ(CI, t)†) .

This completes the proof. �

Proofs of similar propositions to Lemma 16 are given in Refs. [82] and [83].

The final lemma required is the following.

Lemma 18 For any effect (CI,s) ∈ EI ,

Π(CI,s) = ∑
σ∈S

c(σ)σ

with 0≤ c(σ)≤ 1 ∀σ ∈S and ∑σ∈S c(σ) = 1.

Proof sketch of Lemma 18. Let S = 〈(−1)s1Tb1 ,(−1)s2Tb2 , . . .〉 be the stabilizer

group corresponding to the measurements b1,b2, · · · ∈E of the circuit CI giving out-

comes s1,s2, · · · ∈Z2. S can be identified with a pair (Ĩ, γ̃) where Ĩ = 〈b1,b2, . . .〉 ⊂
E is an isotropic subspace and γ̃ : Ĩ→ Z2 is a noncontextual value assignment on

Ĩ. Then Π(CI,s) = Aγ̃

Ĩ .

Let I ⊂ E be a maximal isotropic subspace containing Ĩ and let Γ denote the

set of noncontextual value assignments on I which agree with γ̃ when restricted to

Ĩ. Then

Aγ̃

Ĩ =
1
|Γ| ∑

γ∈Γ

Aγ

I .

This follows from character orthogonality (see Appendix A of Ref. [2] for the

details of the proof). �

We can now prove the main theorem of this section.
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Proof of Theorem 8. The inclusion Λ̃⊆Λ is clear from the definitions of Λ̃ and

Λ. It remains only to prove Λ⊆ Λ̃. Supppose X ∈Λ. Then by definition Tr(X) = 1

and Tr(σX)≥ 0 for all σ ∈S . Let (CS,s) ∈ ES be a stabilizer effect. Then

Tr
(
Π(CS,s)XΠ(CS,s)†)= Tr

(
Π(CP, s̃)XΠ(CP, s̃)†)

= ∑
(CI ,t)∈EI

c(CI, t)Tr
(
Π(CI, t)XΠ(CI, t)†)

= ∑
(CI ,t)∈EI

c(CI, t)Tr(Π(CI, t)X)

= ∑
σ∈S

c(σ)Tr(σX)≥ 0

with (CP, s̃) ∈ EP, c(CI, t)≥ 0 ∀(CI, t) ∈ EI , and c(σ)≥ 0 ∀σ ∈S . Here the first

line follows from Lemma 15, the second line from Lemma 16, the third line from

the fact that the measurements in each CI ∈ CI pairwise commute, the fourth line

from Lemma 18, and the last inequality follows from the fact X ∈ Λ.

Therefore, X ∈ Λ implies X ∈ Λ̃, and thus Λ⊆ Λ̃. �

Theorem 8 shows that the set Λ̃, which has a natural connection to quantum

computation with magic states, can be used to defined a hidden variable model for

QCM, and further, that the resulting hidden variable model is equivalent to the one

defined by Theorem 6.
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Chapter 5

Discussion

In this chapter, we will summarize the results presented thus far, and we will dis-

cuss some open problems relating to them. Since these open problems are not the

main focus of this thesis, we keep the discussion here informal.

In this thesis, we have discussed several quasiprobability representations for

finite-dimensional quantum mechanics and considered their application to the study

of quantum computation with magic states. The generalized Wigner function de-

fined in Chapter 3 unifies several of these representations, including the odd di-

mensional discrete Wigner function [32, 53] and previously defined quasiproba-

bility representations for qubits like the eight state model [62] and the representa-

tion based on stabilizer quasimixtures [64]. It provides a discrete Wigner function

that applies to any number of qudits of any dimension, where previously defined

discrete Wigner functions applied to quantum computation only in limited cases.

The classical simulation algorithm for quantum computation with magic states on

qubits descibed in Section 3.5 establishes negativity in the Wigner function of the

input state of a QCM circuit as a necessary condition for quantum comptutation

with magic states to exhibit a computational speedup over classical computation,

extending the previous result of Ref. [1] which applied only to odd-dimensional

qudits.

In Chapter 4, we have defined a hidden variable model for quantum compu-

tation with magic states which represents all n-qubit quantum states, as well as

all QCM dynamics, in terms of (nonnegative) probabilities. This model is struc-
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turally similar to a quasiprobability representations of finite-dimensional quantum

mechanics, the key difference between this representation and previous quasiprob-

ability representations being the lack of negativity—it could be called a probability

representation. This hidden variable model leads to a classical simulation algo-

rithm for quantum computation with magic states that can simulate any QCM cir-

cuit applied to any input quantum state, though we make no claims of efficiency of

this classical simulation algorithm and we strongly suspect that it is not efficient in

general. In fact, since this classical simulation algorithm applies to any quantum

computation, if a quantum computational advantage for quantum computation over

classical computation exists, as is widely believed, then the classical simulation al-

gorithm must be inefficient in general.

The existence of a classical seeming hidden variable model for a universal

model of quantum computation is unintuitive. In previous quasiprobility repre-

sentations applied to quantum computation with magic states such as the discrete

Wigner functions, states would be partitioned into two subsets. The positively

representable states would be considered more classical as these are the states for

which a hidden variable model applies and further, these are the states for which

QCM can be efficiently simulated [1, 2]. The states which cannot be positively

represented are simultaneously the states for which the hidden variable model fails,

and those for which a quantum computational speedup in QCM is possible. With

the hidden variable model of Theorem 6, we no longer have this partitioning of

quantum states—all states are positively representable. Therefore, negativity in

a quasiprobability representation alone is not sufficient for a quantum computa-

tional speedup as the presence or absence of negativity can depend on the choice

of quasiprobability representation.

The unintuitive nature of the existence of this hidden variable model is further

evidenced by its near misses with many no-go theorems. For example, the Pusey-

Barrett-Rudolph (PBR) theorem [84], which states that, under certain assumptions,

there can be no ψ-epistemic model for quantum theory. With Theorem 6, we have

a ψ-epistemic model. This apparent contradiction is resolved by the fact that the

model of Theorem 6 considers only sequences of Pauli measurements, it does not

allow more general measurements. This restriction does not affect the universal-
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ity of quantum computation. Also, the model does not satisfy the assumption of

preparation independence required for the PBR theorem to hold. That is, in gen-

eral, pρ1⊗ρ2 6= pρ1 · pρ2 .

The assumption of preparation independence is less relevant for models of

quantum computation where, from a resource theory perspective, the free states

and operations are the stabilizer states and stabilizer operations [42], not local states

and local operations. Further, the memory lower bound of Karanjai, Wallman, and

Bartlett [39] shows that no hidden variable model which spawns a classical simu-

lation algorithm for quantum computation with magic states on qubits like that of

Algorithm 4.1 can satisfy the assumption of preparation independence.

There is another result which states, under certain assumptions, there can be

no quasiprobability representation for quantum theory that is entirely nonnega-

tive [74, 75, 85]. Also, under similar assumptions, a nonnegative quasiprobability

representation is equivalent to a noncontextual hidden variable model [35]. Since

quantum mechanics of multiple qubits is known to be contextual, there should be

no nonnegative quasiprobability representation for multiqubit states. The resolu-

tion here is in the fact that these results apply to quasiprobability representations

for which that map from states to quasiprobability distributions is one-to-one and

linear. This map for the model defined by Theorem 6 is not one-to-one and linear

since the probability function pρ is not unique (the discussion of the SW criteria

and contextuality for the hidden variable model of Chapter 4 mirrors that of the

quasiprobability representation of Chapter 3 given in Section 3.6). Therefore, it

is the same modification made to the SW criteria that allowed for contextuality of

the model defined in Chapter 3 which allows the model of Chapter 4 to skirt these

no-go results.

To summarize, we have presented two models for describing quantum compu-

tation with magic states on qubits. Both models lead to classical simulation algo-

rithms for quantum computation. Algorithm 3.1 is efficient, but it applies only to

QCM circuits on the strict subset of input states which are positively representable.

There is no such restriction on the applicability of Algorithm 4.1, it can simulate

any quantum computation, but it is not necessarily efficient. Both of these mod-

els have intricate structure, as partially elucidated in Section 3.3 and Section 4.3,
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which is closely related to the geometry of polytopes in spaces of operators. These

models also open several questions surrounding their relation to contextuality, neg-

ativity, quantum computation, and geometry which could serve as the basis for

future study.
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Fréchette, Emile Hoskinson, Nicolas Ladizinsky, Travis Oh, Gabriel
Poulin-Lamarre, Christopher Rich, Yuki Sato, Anatoly Yu. Smirnov, Loren J.
Swenson, Mark H. Volkmann, Jed Whittaker, Jason Yao, Eric Ladizinsky,
Mark W. Johnson, Jeremy Hilton, and Mohammad H. Amin. Observation of
topological phenomena in a programmable lattice of 1,800 qubits. Nature,
560(7719):456–460, 2018. doi:10.1038/s41586-018-0410-x.

[15] K. Wright, K. M. Beck, S. Debnath, J. M. Amini, Y. Nam, N. Grzesiak, J.-S.
Chen, N. C. Pisenti, M. Chmielewski, C. Collins, K. M. Hudek, J. Mizrahi,
J. D. Wong-Campos, S. Allen, J. Apisdorf, P. Solomon, M. Williams, A. M.
Ducore, A. Blinov, S. M. Kreikemeier, V. Chaplin, M. Keesan, C. Monroe,
and J. Kim. Benchmarking an 11-qubit quantum computer. Nature
Communications, 10(1):5464, 2019. doi:10.1038/s41467-019-13534-2. →
page 1
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Appendix A

Computational methods

A.1 Generating multiqubit phase point operators
For the purpose of the numerical calculations in Appendix B, it is important to be

able to enumerate all phase points of the multiqubit generalized phase space V

defined in Chapter 3. Points in V are associated with pairs (Ω,γ) where Ω⊂ E is

a cnc set and γ : Ω→ Z2 is a noncontextual value assignment on that set. The task

of enumerating all such pairs can be broken down into two steps: (i) enumerating

cnc sets, and (ii) enumerating their noncontextual value assignments.

First, the classification of multiqubit phase space points provided by Lemma 3,

Theorem 2, and Lemma 5 gives a concise description of all maximal cnc sets. They

are sets of the form

Ω =
2m+1⋃
k=1

〈ak, Ĩ〉

where Ĩ = 〈g1,g2, . . . ,gn−m〉 is a n−m-dimensional isotropic subspace of E and

a1,a2, . . . ,a2m+1 ∈ Ĩ⊥/Ĩ pairwise anticommute. Given a cnc set Ω with genera-

tors g1,g2, . . . ,gn−m,a1,a2, . . . ,a2m+1, all possible nonontextual value assignments

on Ω are obtained by choosing the value of γ freely on the generators and then

determining γ on the rest of Ω through the relation Eq. (3.1).

It remains to enumerate all cnc sets Ω. This task can itself be broken down

into two steps. To enumerate all cnc sets with parameters n and m, it suffices to

(i) enumerate all n−m-dimensional isotropic subspaces Ĩ of E, and (ii) enumerate
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all sets A of pairwise anticommuting elements of Z2m
2 with cardinality 2m+1. As

a result of the isomorphism Ĩ⊥/Ĩ ' Z2m
2 , for each Ĩ ⊂ E we can find a symplectic

map M :Z2m
2 → Ĩ⊥/Ĩ. Using a fixed symplectic map MĨ for each isotropic subspace

Ĩ, a pair (Ĩ,MĨ ·A) uniquely specifies a cnc set Ω. Subroutines for each of the tasks

described here are given in below.

A.1.1 A canonical basis for isotropic subspaces

Enumerating phase point operators requires a subroutine which enumerates isotropic

subspaces of Z2n
2 . To this end, we can use a canonical basis for subspaces of vector

spaces over finite fields. One such canonical basis comes from the rows of a matrix

in upper triangular form [86]. For example, a four dimensional subspace of the

vector space F8
d is obtained from the row space of the matrix

A11 0 A13 0 0 A16 1 0

A21 0 A23 0 1 0 0 0

A31 0 A33 1 0 0 0 0

A41 1 0 0 0 0 0 0


with different values for A11,A13,A16,A21,A23,A31,A33,A41 ∈ Fd giving different

subspaces. To enumerate all subspaces of Z2n
2 it suffices to enumerate upper tri-

angular matrices with entries in Z2. Then to obtain an enumeration of isotropic

subspaces we can filter out matrices whose rows do not pairwise commute.

An alternative approach to enumerating isotropic subspaces could be based on

a canonical form for stabilizer codes (e.g. [4, §10.5.7]). The advantage to this ap-

proach is that every basis described in this standard form generates an isotropic

subspace. There is no need to filter out nonisotropic subspaces. On the other hand,

there are multiple bases in this standard form which generate the same isotropic

subspace. Since for our purposes it is important to obtain a unique set of gen-

erators for each isotropic subspace, and it is generally easier to check if a set of

generators pairwise commute than to remove redundancy by checking that a set

of bases generate distinct isotropic subspaces, for few qubits the method above is

more practical.
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A.1.2 Maximal anticommuting sets in Z2m
2

There are many equivalent ways of generating all maximal sets of pairwise anti-

commuting vectors of size 2m+1 in Z2m
2 . Since the symplectic group acts transi-

tively on these sets, one method proceeds by acting with the symplectic group on

the set defined by Eqs. (3.6) and (3.7). The size of the symplectic group Sp(2m,Z2)

grows very quickly with the number of qubits m so this method quickly becomes

intractible.1 Alternatively, since the number of these sets is known (c.f. proof of

Theorem 5), a brute force search is also possible for few qubits.

A.1.3 The symplectic Gram-Schmidt procedure

A useful subroutine for generating phase point operators is the symplectic Gram-

Schmidt procedure [87]. The symplectic Gram-Schmidt procedure takes as input a

set of vectors S in the symplectic vector space Z2n
2 and returns a symplectic basis

for the span of S/(S∩S⊥). The procedure is described in Algorithm A.1. At each

step of the algorithm, either an element of S∩S⊥ is removed from S, or a symplectic

pair (e, f ) is picked out from S and added to the basis and S is updated to a new

set S′ such that S′ ∪ {e, f} has the same span as the S at the previous iteration,

[e,s] = [ f ,s] = 0 ∀s ∈ S′, and |S′| ≤ |S|−2.

The Choose(S) function used in Algorithm A.1 picks an arbitrary element from

the set S. An element can be chosen at random, or to make the algorithm determin-

istic, we can order vectors in Z2n
2 as binary strings and have the Choose function

return the least element in the set S with respect to this order.

For a n−m-dimensional isotropic subspace Ĩ ⊂ E, using Ĩ⊥ as input to the

symplectic Gram-Schmidt procedure gives a basis for Ĩ⊥/Ĩ. The map that takes

the standard symplectic basis of Z2m
2 to the basis of Ĩ⊥/Ĩ defines a symplectic map

M : Z2m
2 → Ĩ⊥/Ĩ.

1The size of the symplectic group is

|Sp(2m,Z2)|= 2m2
m

∏
k=1

4k−1.
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Input: S⊂ Z2n
2

1: basis← /0
2: repeat
3: e← Choose(S)
4: if [a,e] = 0 ∀a ∈ S then
5: S← S\{e}
6: else
7: f ← Choose({a ∈ S | [e,a] = 1})
8: basis← basis∪{(e, f )}
9: S←{a+[a, f ]e+[a,e] f | a ∈ S}

10: end if
11: until |S|= 0
Output: basis

Algorithm A.1: The symplectic Gram-Schmidt procedure. This algorithm
takes as input a set of vectors S ⊂ Z2n

2 and returns a symplectic
basis for the span of S/(S∩S⊥).

A.2 Numerical calculation of robustness
The robustness of magic, defined in Eq. (2.25), and the phase space robustness,

defined in Eq. (3.24), are both defined as the solutions to convex optimization

problems. Each of these problems can be transformed into a linear program (as

in the proof of Lemma 11) and then solved with a linear programming solver. For

the robustness calculations presented in Appendix B, we use the software package

Gurobi.2

As demonstrated in table 3.1, the size of the phase space and the number of sta-

bilizer states grow very quickly with the number of qubits making the optimization

problems intractible even for few qubits. For certain states which share symme-

tries with the phase space, this shared symmetry can be exploited to reduce the

number of variables needed in the robustness calculations. This method was used

in Ref. [88] to compute the robustness of magic for copies of the states |H〉 and
|T 〉 on up to 9 and 10 qubits. Since the symmetry group used in this reduction, a

subgroup of the Clifford group, is also a symmetry of the phase space of Chapter 3,

this method could also be used in the calculations of the phase space robustness.

2gurobi.com
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A.3 Generating random quantum states
Some of the numerical results presented in Appendix B require the ability to gener-

ate random quantum states. For systems of qubits and systems of rebits we need to

be able to generate both pure states distributed uniformly according to the Fubini-

Study measure3 and mixed states distributed uniformly according to the Hilbert-

Schmidt measure4 for systems of qubits and rebits. Algorithms for each of these

ensembles exist [89–92].

The primitive task in all four cases is to generate a random matrix X with nor-

mally distributed entries. Then the state returned is the normalized density matrix

ρ =
XX†

Tr(XX†)
. (A.1)

The nature of the state and the measure according to which it is distributed depend

only on how we choose X .

We have four cases of interest:

1. To generate a random pure state of a D-dimensional quantum system dis-

tributed according to the Fubini-Study measure, we choose X to have di-

mensions D× 1 with elements distributed according to a complex standard

normal distribution [89].

2. To generate a random pure state of a D-dimensional quantum system with

a real density matrix distributed according to the Fubini-Study measure we

choose X to have dimensions D× 1 with entries distributed according to a

real standard normal distribution [89].

3. To generate a random mixed state of a D-dimensional quantum system dis-

tributed according to the Hilbert-Schmidt measure, we choose X to have

3The Fubini-Study measure is the measure induced by the Fubini-Study metric. It is the unique
measure on the set of pure quantum states which is invariant with respect to the action of the unitary
group. It can equivalently be defined as the measure on pure quantum states induced by the Haar
measure on the unitary group. I.e. a Fubini-Study distributed random state is the result of a Haar
distributed random unitary applied to a fixed reference state [89].

4The Hilbert-Schmidt measure is the measure induced by the Hilbert-Schmidt metric. The aver-
age purity of Hilbert-Schmidt distributed random states scales like 1/D where D is the dimension of
the quantum system [90].
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dimensions D×D with entries distributed according to a complex normal

distribution, i.e. X is taken from the complex Ginibre ensemble [93]. This

is equivalent to generating a pure state of a composite system in the Hilbert

space CD⊗CD distributed according to the Fubini-Study measure and trac-

ing out the first subsystem [89].

4. To generate a random mixed state of a D-dimensional quantum system with

a real density matrix distributed according to the Hilbert-Schmidt measure,

we choose X to have dimensions D×D+1 with entries distributed according

to a real standard normal distribution [91].

A.4 Enumerating vertices of Λ

The polytope Λ from Chapter 4 is defined as the intersection of a finite set of half-

spaces:

Λ := {X ∈ O(2n) | Tr(σX)≥ 0 ∀σ ∈S }.

This is known as the H-representation of a polytope. Since the polytope is compact

(c.f. Lemma 12), by the Minkowski-Weyl theorem, the polytope can equivalently

be described as the convex hull of its finitely many vertices [71, §1.1]:

Λ = ConvHull{Aα | α ∈ V }.

This is called the V-represenation of the polytope. As the probability representation

of quantum states and dynamics in the hidden variable model described by Theo-

rem 6 is in terms of the vertices of the polytope it is useful to be able to convert

between these representations. This is a standard problem in computational ge-

ometry known as the vertex enumeration problem with several dedicated software

packages (e.g. lrslib5 and cddlib6).

A numerical enumeration of the vertices suggests that the number of vertices

of Λ grows extremely quickly with the number n of qubits. Using lrslib and cddlib,

a complete enumeration of the vertices has so far only been possible for up to two

5cgm.cs.mcgill.ca/ avis/C/lrs.html
6github.com/cddlib/cddlib
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qubits. For one qubit Λ has 8 vertices (the phase point operators of the eight state

model [62]) and for two qubits Λ has 22320 vertices.

In addition to enumerating the vertices of Λ, it is important to be able to find

a probability function pρ : V → R≥0 representing a state ρ . This can be achieved

via linear programming. In particular, a valid probability function representing the

state ρ can be obtained as the solution to the linear program

min
p,u,v

{
∑
a∈E

ua + va

∣∣∣∣ ρ = ∑
a∈E

(ua− va)Ta + ∑
α∈V

p(α)Aα , ua,va ≥ 0 ∀a ∈ E, p(α)≥ 0 ∀α ∈ V

}
.

This is known as the auxillary problem in linear programming [80], or phase 1

of the two phase simplex method. An initial dictionary for this linear program is

obtained by taking ua = max(0,2−nTr(ρTa)) and va = max(0,−2−nTr(ρTa)) ∀a ∈
E, and p(α) = 0 ∀α ∈ V .

If among the vertices of Λ, there is a subset V ∗ ⊂ V of preferred vertices, we

can find a probability distribution pρ which maximizes the weight of the vertices

in this set by instead solving the linear program

max
p

{
∑

α∈V ∗
p(α)

∣∣∣∣ ρ = ∑
α∈V

p(α)Aα , p(α)≥ 0 ∀α ∈ V

}
.

In these two linear programs, there is a variable for each vertex of Λ. The num-

ber of variables needed for the problems can be reduced (and hence the complexity

of finding pρ can be reduced) if the state ρ lies on the boundary of the polytope Λ.

To see this, consider an expansion of a state ρ of the form Eq. (4.2). Multiply-

ing Eq. (4.2) by a stabilizer state σ ∈S and taking a trace we have

Tr(σρ) = ∑
α∈V

pρ(α)Tr(σAα).

Since the coefficients pρ(α) in the expansion of ρ are all nonnegative, if the left

hand side of this equation is zero, then for each α ∈ V with pρ(α) > 0 we must

have Tr(σAα) = 0. That is, any vertex Aα ∈ A that can appear with nonzero

weight in the expansion of a state ρ must must be orthogonal to any stabilizer state

that is orthogonal to ρ with respect to the Hilbert-Schmidt inner product. If ρ is
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on the boundary of Λ then there is a nonempty set of stabilizer states orthogonal

to ρ and so for the purposes of solving the linear programs above we can restrict

the variables to vertices in the set {α ∈ V | Tr(σAα) = 0 ∀σ ∈Sρ} where Sρ :=

{σ ∈S | Tr(σρ) = 0}.
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Appendix B

Numerical comparison of QCM
simulation methods

B.1 Robustness values for common magic states
One method of comparing the phase space simulation method of Chapter 3 with

the previous simulation method based on decompositions of states into stabilizer

states [64] is to compare the parameter that quantifies the cost of classical simula-

tion for some common magic states. For the method based on stabilizer quasimix-

tures this is the robustness of magic, RS, defined in Eq. 2.25 [64]. For the phase

space method the corresponding parameter is the phase space robustness, R, de-

fined in Eq. (3.24). Some common magic states used in QCM are tensor products of

n RS R

1 1.4142 1.0000
2 1.7476 1.0000
3 2.2190 1.2828

(a) State: |H〉〈H|⊗n

n RS R

1 1.7321 1.0000
2 2.2321 1.0000
3 3.0981 1.3849

(b) State: |T 〉〈T |⊗n

Table B.1: Robustness of magic, RS, and phase space robustness, R, for n
copies of the single-qubit magic states |H〉〈H| = 1

2 I + 1
2
√

2
(X +Y ) and

|T 〉〈T |= 1
2 I + 1

2
√

3
(X +Y +Z).
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Figure B.1: Robustness of magic (blue) and phase space robustness (red) cal-
culated numerically for the magic state |H(φ)〉⊗3 as a function of φ

where |H(φ)〉 = (|0〉+ e−iφ |1〉)/
√

2. At φ = 0,π/2,π,3π/2, and 2π ,
|H(φ)〉 is a stabilizer state and so RS = R = 1. For all other states
plotted, R<RS.

the one-qubit states |H〉〈H|= 1
2 I+ 1

2
√

2
(X +Y ) and |T 〉〈T |= 1

2 I+ 1
2
√

3
(X +Y +Z).

Numerically calculated values for the robustness of magic and phase space robust-

ness for copies of these magic states are given in Table B.1.

From Table B.1 we can see that the phase space robustness is consistently

lower than the robustness of magic. In fact, it can be proven that for any state

ρ , R(ρ)≤RS(ρ)≤ (4n+1)R(ρ) (see Appendix C of Ref. [2] for the proof). To

illustrate this point further, in Fig. B.1, we plot numerically calculated values of

the robustness of magic and the phase space robustness for the state |H(φ)〉⊗3 with
|H(φ)〉 = (|0〉+ e−iφ |1〉)/

√
2 as a function of φ for φ ∈ [0,2π]. Since stabilizer

states are positively representable by both methods, the robustness of magic and

phase space robustness agree on the stabilizer states occuring at φ = 0,π/2,π, . . . .

Away from these stabilizer states, the phase space robustness is strictly smaller than

the robustness of magic.

Finally, we can consider the states with maximal robustness of magic for a

given number of qubits. On one qubit, the robustness of magic is maximal for the

state |T 〉. Robustness of magic and phase space robustness for this state are given in
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the first row of Table B.1b. For two-qubit equally-weighted states, the robustness

of magic is maximal for the state |max2〉 = (|00〉+ |01〉+ |10〉+ i |11〉)/2 with

RS(|max2〉〈max2|) = 2.2 [64]. The phase space robustness of this state is 1, i.e.,

this state is positively representable.

For three qubits, the robustness of magic is maximized by the Hoggar state [64],

|Hoggar〉= 1√
6

[
1+ i 0 −1 1 −i 1 0 0

]
,

a fiducial state of a SIC-POVM [94]. The robustness of magic for this state is

RS(|Hoggar〉〈Hoggar|)= 3.8, and the phase space robustness is R(|Hoggar〉〈Hoggar|)=
1.8.

B.2 Positively representable states
Another method of comparing the phase space simulation algorithm with the sim-

ulation algorithm based on stabilizer quasimixtures is to compare the sets of states

for which the simulation algorithms are efficient. That is, to compare the states

which are positively representable by each method. For an additional comparison,

in this section we also consider states for which another simulation method called

Schrödinger propagation is efficient [95]. This method is based on decompositions

of states into Pauli operators, and the set of states for which this method is efficient

are called hyper-octahedral states.

To get an estimate of the volume of states which are positively representable

in each method, we sample states distributed uniformly, and compute the frac-

tion of states sampled which are positively representable. We consider four cases:

pure state distributed according to the Fubini-Study measure and mixed states dis-

tributed according to the Hilbert-Schmidt measure for systems of qubits and for

systems of rebits. Estimates of the volume of positively representable states for

each of these cases on up to three qubits are given in Table B.2. For one-qubit and

two-qubit states, the estimates are based on 100,000 samples, and for three-qubit

states the estimates are based on 10,000 samples.

From Table B.2, we can see that by this metric the phase space method gen-

erally outperforms the stabilizer quasimixture method and the Schrödinger prop-
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n\m V , all m V , m = 1 V , m = 0 hy.oct.
1 1.000 1.000 0.000 0.000
2 0.980 0.980 0.000 0.000
3 0.000 0.000 0.000 0.000

(a) Pure qubit states
n\m V , all m V , m = 1 V , m = 0 hy.oct.
1 1.000 1.000 0.318 0.318
2 1.000 1.000 0.009 0.568
3 1.000 1.000 0.000 0.897

(b) Mixed qubit states
n\m V , all m V , m = 1 V , m = 0 hy.oct.
1 1.000 1.000 0.000 0.000
2 1.000 1.000 0.000 0.000
3 0.001 0.001 0.000 0.000

(c) Pure rebit states
n\m V , all m V , m = 1 V , m = 0 hy.oct.
1 1.000 1.000 0.637 0.637
2 1.000 1.000 0.144 0.924
3 1.000 1.000 0.001 0.999

(d) Mixed rebit states

Table B.2: Fraction of states positively representable by various quasiproba-
bility representations. The second column uses the representation based
on the generalized phase space of Chapter 3, the third column is obtained
by restricting the phase space to cnc sets with parameter m= 1, the fourth
column is the fraction of stabilizer mixtures, and the last column is the
fraction of hyper-octahedral states.

agation method. In the second last column of Tables B.2a and B.2c, we can see

that 0% of pure states sampled are stabilizer mixtures. This is true for any number

of qubits. The set of pure states which are positively representable as stabilizer

quasimixtures are the finitely many pure stabilizer states, a set with measure zero.

On the other hand, the set of pure states which are positively representable by the

phase space method has nonzero measure.

It is also worth noting that for the cases of one qubit, one rebit, and two rebits, it
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Stabilizer mixtures

(a)

Hyper-octahedral states

(b)

States positively
representable by W

(c)

Figure B.2: States in the cross section of two-qubit states ρ(x,y) defined by
Eq. B.1 which are positively representable with respect to (a) decompo-
sitions in stabilizer states, (b) hyper-octahedral states, and (c) the phase
space of Chapter 3.

can be proven that all states are positively representable by the phase space method.

Enumerating the vertices of the polytope Λ defined in Chapter 4 shows that in these

three cases the vertices of Λ coincide precisely with the phase point operators of

Chapter 3. Since all states are contained in Λ (c.f. Lemma 13), this shows that

all states are positively representable. This is not true in general, for two qubits

for example, there are more vertices of Λ than there are two-qubit phase point

operators.

Table B.2 also shows the fraction of states which are positively representable

by the phase space of Chapter 3 obtained using only cnc sets with parameter m = 1

in Eq. 3.5. Comparing this with the fraction of positively representable states with

respect to the full phase space, we see that most of the benefit of the phase space

method is obtained from only these m = 1 sets. There are states which are posi-

tively representable with respect to the full phase space but which are not positively

representable with respect to the restricted m = 1 phase space, but these states rep-

resent a small fraction of positively representable states.

As a final illustration of the difference in the simulation methods in terms of

positive representability of states, in Fig. B.2 we plot the portion of two-qubit states

which are positively representable by each of the methods for the cross section of

two-qubit states of the form

ρ(x,y) =
I
4

I1I2 + x(X1X2 +Z1Z2−Y1Y2)+ y(Z1 +Z2). (B.1)
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