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A web of cohomological facts relates quantum error correction, measurement-
based quantum computation, symmetry protected topological order and con-
textuality. Here we extend this web to quantum computation with magic states.
In this computational scheme, the negativity of certain quasiprobability func-
tions is an indicator for quantumness. However, when constructing quasiprob-
ability functions to which this statement applies, a marked difference arises
between the cases of even and odd local Hilbert space dimension. At a tech-
nical level, establishing negativity as an indicator of quantumness in quantum
computation with magic states relies on two properties of the Wigner function:
their covariance with respect to the Clifford group and positive representa-
tion of Pauli measurements. In odd dimension, Gross’ Wigner function—an
adaptation of the original Wigner function to odd-finite-dimensional Hilbert
spaces—possesses these properties. In even dimension, Gross’ Wigner function
doesn’t exist. Here we discuss the broader class of Wigner functions that, like
Gross’, are obtained from operator bases. We find that such Clifford-covariant
Wigner functions do not exist in any even dimension, and furthermore, Pauli
measurements cannot be positively represented by them in any even dimension
whenever the number of qudits is n ≥ 2. We establish that the obstructions to
the existence of such Wigner functions are cohomological.

1 Introduction
Homology and cohomology find widespread uses in physics [1], starting with Gauss’ the-
orem in electromagnetism. They have more recently entered the fields of foundations of
quantum mechanics and quantum computation. Regarding the former, Kochen-Specker
contextuality [2] has recently been given a cohomological underpinning [3, 4, 5]. Re-
garding the latter, Wigner function negativity—a traditional indicator of nonclassical-
ity in quantum optics [6]—has been shown to be equivalent to contextuality in certain
cases [7, 8, 9, 10], and both have been linked to the possibility of quantum computational
advantage [11, 12, 13, 14, 15].

A short list of cohomological phenomena in the field of quantum computation is as fol-
lows: (i) quantum error correction with the Kitaev surface code [16, 17], and its measurement-
based counterpart with 3D cluster states [18]; (ii) proofs of contextuality of quantum me-
chanics [2, 3, 4, 5], in particular parity-based proofs such as Mermin’s square and star
[19]; (iii) the contextuality of measurement-based quantum computation (MBQC) [20]
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in the limit of flat temporal order1 [22]; (iv) computational phases of quantum matter
[23, 24, 25, 26, 27, 28, 29, 30] which relate MBQC to symmetry protected topological
order.

The above facts are not isolated but form an inter-related web. For example, fact
(iii) on MBQC is a consequence of fact (ii) on parity-based contextuality proofs. Fur-
thermore, recently, a connection between the phenomenologically rather distant fields of
contextual MBQCs and computational phases of matter has been established [31]. Coho-
mology emerges as a language to navigate this web of fundamental facts about quantum
computation, and to explain those facts in a unified fashion.

The purpose of this paper is to extend this ‘web of cohomology’ to a further scheme of
quantum computation, namely quantum computation with magic states (QCM) [32]. In
QCM, the gate operations are reduced from a universal set to the so-called Clifford gates,
which form a finite group for any number of qudits. By the Gottesman-Knill theorem, the
reduced gate set alone cannot generate a quantum speedup. To retain the quantum compu-
tational power of the circuit model, the Clifford operations are supplemented by so-called
‘magic’ states.—Which properties must those magic states have to enable universality and
quantum speedup?

It has been found that discrete Wigner functions and related quasiprobability functions
are indicators of quantumness for QCM [15]. A quantum speedup can exist only if those
functions take negative values on the magic states. We show that, depending on local
Hilbert space dimension and number of qudits, whether or not a Wigner function exists
that can serve as an indicator of quantumness in QCM is a question of cohomology.

For odd-dimensional qudits, the phenomenology is well understood: A precondition for
quantum speedup is negativity in the Wigner function [33, 34] of the magic states [15, 35],
as well as their contextuality [13]. At a technical level, the first result rests on two facts
about Gross’ Wigner function [36, 37], namely (a) that it is covariant under all Clifford
transformations, and (b) that its positivity is preserved under all Pauli measurements.
The second result rests on the first, and further the fact that (c) non-contextual value
assignments for Pauli observables exist in odd dimension. Our discussion will reveal that
the facts (a), (b), (c) are cohomological.

Our greater phenomenological interest is with the trickier case of even local dimension
(qubits etc.); see [12, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48]. Do the above results
on Wigner function negativity and state-dependent contextuality cary over?—Mermin’s
square prevents the latter, leaving the former for discussion. Indeed, it turns out that
negativity as precondition for speedup can be reproduced in even dimension if one admits
more general quasi-probability functions; specifically quasiprobability functions that do
not stem from an operator basis and are not even unique [44, 42]. If one is not prepared
to consider such generalizations, one is confronted with no-go theorems. For example, it
is known that Wigner functions satisfying the assumption of diagram preservation cannot
represent the stabilizer sub-theory of quantum mechanics positively [46]. Furthermore, for
qubits, it has been shown that Clifford-covariant Wigner functions from operator bases do
not exist [43].

In this paper, we extend the known no-go results for Wigner functions derived from
operator bases to all even dimensions, and also to the question of positivity preservation
under Pauli measurement. The latter is central for QCM; see Section 2.2.3. Our technical
contributions are two-fold: First, we formalize the obstructions to the existence of Wigner
functions with the above “nice” properties (a) and (b). We demonstrate that these ob-

1The MBQC-contextuality connection itself is not restricted to flat temporal order [21].
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structions are cohomological in nature. Second, we apply these general results to the case
of even dimension. We show that, in all even dimensions, Wigner functions constructed
from operator bases cannot be Clifford covariant and cannot represent Pauli measurement
positively. Our main results are stated as Theorems 4 – 8.
Outline. In Section 2 we provide the necessary background on the Pauli and Clifford
groups, QCM, Wigner functions, cohomology, and contextuality. In Section 3 we define
theWigner functions of present interest. Section 4 is on the possibility of Clifford covariance
of Wigner functions constructed from operator bases. Theorem 4 identifies a necessary and
sufficient cohomological condition for the existence of Clifford-covariant Wigner functions,
and Theorem 5 applies this condition to the case of even dimension. Section 5 discusses
positive representation of Pauli measurement by Wigner functions that are constructed
from operator bases and fulfill the Stratonovich-Weyl criteria [49, 50]. Theorem 7 provides
a necessary and sufficient cohomological criterion for the existence of Wigner functions
that represent Pauli measurement positively, and Theorem 8 applies this criterion to even
dimension. Section 6 is the discussion.

2 Background
In this section we review the necessary background material, namely the Pauli and the
Clifford group, quantum computation with magic states (QCM), Wigner functions and
the Stratonovich-Weyl criteria, and cohomology. QCM is the computational model of
interest for this paper, Clifford gates and Pauli measurements are the operational primitives
thereof, and suitably defined Wigner functions serve as indicators or quantumness. Finally,
cohomological properties determine whether the ‘suitable’ Wigner functions can be defined.

We also review two types of proofs for the contextuality of quantum mechanics, namely
parity-based and symmetry-based contextuality proofs. While they are not necessary to
understand our main results, Theorems 4–8; they are based on the same cohomological
structures, and thus connect the present discussion to the broader picture.

2.1 The Pauli group and the Clifford group
Pauli observables and Clifford unitaries are of central importance for this paper. Here we
provide the definitions for reference.

2.1.1 The Pauli group

Definition. Let d ≥ 2 be a natural number. The 1-qudit Pauli group is defined using
the usual shift X and the phase Z operators acting on Cd:

X|k〉 = |k + 1〉, Z|k〉 = ωk|k〉 (1)

where k ∈ Zd and ω = e2πi/d. Tensor products of these operators are used to construct the
n-qudit Pauli group. oe is a distinction between the odd- and the even-dimensional cases:
Let µ = ω and Zµ = Zd (µ =

√
ω and Zµ = Z2d) if d is odd (even). Pauli operators are

defined by
Ta = µγ(a)Z(az)X(ax) (2)

where a = (aZ , aX) ∈ Znd × Znd =: E, Z(aZ) :=
⊗n

k=1 Z
aZ [k], X(aX) :=

⊗n
k=1X

aX [k], and
γ : E → Zµ is a function chosen such that all operators Ta satisfy (Ta)d = I. For even d,
the requirement that (Ta)d = I restricts γ to γ(a) mod 2 ≡ (az)Tax mod 2.
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The n-qudit Pauli group Pn is generated by the operators Ta where a ∈ E, yielding
Pn = {µλTa : λ ∈ Zµ, a ∈ E}. The commutation relation among Pauli operators can be
expressed in terms of a symplectic form, TaTb = ω[a,b]TbTa, with

[a, b] := (aZ)T bX − (aX)T bZ mod d. (3)

Thus, Ta and Tb commute if and only if [a, b] = 0. Of interest to us is the multiplication
table of Pauli observables, especially among commuting ones,

TaTb = ωβ(a,b)Ta+b, [a, b] = 0. (4)

This relation defines the function β with values in Zd.

Structural properties. We have the following structural results about the multiplica-
tion table of Eq. (4).

Observation 1 ([36]) If the dimension d is odd, then for any number n of qudits the phases
γ(a) in Eq. (2) can be chosen such that β ≡ 0.

The proof of Observation 1 is constructive; choose

γ(a) = −2−1(aZ)TaX . (5)

Among the phenomenological implications of Observation 1 are (i) the fact that there
is no parity-based contextuality proof on Pauli observables [14, 41] (i.e., no counterpart
to Mermin’s square and star) when d is odd; and (ii) the multi-qudit Wigner function
defined in [36] is positivity-preserving under all Pauli measurements. Both properties are
important for identifying Wigner function negativity and state-dependent contextuality as
preconditions for quantum speedup in QCM, see [15],[13].

The even-dimensional counterpart of Observation 1 will be discussed in Section 5.3.
For the special case of d = 2 the following is known.

Observation 2 ([19]) If d = 2 then for all n ≥ 2 and any choice of the function γ in Eq. (2)
it holds that β 6≡ 0.
The Proof of Observation 2 is provided by Mermin’s square [19].

2.1.2 Clifford group

The n-qudit Clifford group Cln is the normalizer of the Pauli group Pn in the unitary group
U(2n), with the phases modded out,

Cln = N(Pn)/U(1). (6)

Of central interest to us is how the Clifford group acts on Pauli observables by conjugation,

g(Ta) := gTag
† = ωΦ̃g(a)TSga, ∀g ∈ Cln, ∀a ∈ E, (7)

where Sg is a symplectic transformation acting on E, i.e. an element of Sp(E) (also denoted
by Sp2n(Zd)). Here we are using two observations: (1) Sg is a group homomorphism
E → E since g respects products of Pauli operators, i.e. g(TaTb) = g(Ta)g(Tb), and (2) Sg
is symplectic since g respects commutators in the sense that [g(Ta), g(Tb)] = g([Ta, Tb]).
The Pauli group with the phases modded out, Pn := Pn/(U(1) ∩ Pn) ∼= Znd × Znd , is a
normal subgroup of Cln, and it holds that Sp(E) ∼= Cln/Pn.

The phase function Φ̃ plays an important role in the subsequent discussion. U(1)-
phases in N(Pn) do not affect Φ̃ in Eq. (7), which is why we may mod out those phases to
begin with, cf. the definition of Cln in Eq. (6).
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2.2 Quantum computation with magic states
Quantum computation with magic states (QCM) [32] is a scheme for universal quantum
computation. It is closely related to the circuit model, but there is an important difference:
the set of realizable quantum gates is restricted to the Clifford gates, hence not universal.
Quantum computational universality is restored by the inclusion of so-called magic states.

2.2.1 Operations in QCM

There are two types of operations in QCM, the “free” operations and the resources. The
free operations are (i) preparation of all stabilizer states, (ii) all Clifford unitaries, and (iii)
measurement of all Pauli observables.

The resource are arbitrarily many copies of the state

|T 〉 = |0〉+ eiπ/4|1〉√
2

. (8)

The state |T 〉 is called a “magic state”, because of its capability to restore universality,
given Clifford gates and Pauli measurements.

The distinction between free operations and resources in QCM is motivated by the
Gottesman-Knill theorem. Namely, the free operations alone are not universal for quantum
computation, and, in fact, can be efficiently classically simulated [51, 52].

2.2.2 Computational universality

For the case of qubits, d = 2, it is well known [53] that the gates {CNOTij , Hi, Ti; 1 ≤
i, j ≤ n, i 6= j} form a universal set, i.e., enable universal quantum computation. Therein,
the only non-Clifford element is Ti = exp

(
−iπ8Zi

)
. This gate can be simulated by the use

of a single magic state |T 〉 in a circuit of Clifford gates and Pauli measurements (circuit
reproduced from Fig. 10.25 of [54]),

SXT
ψ

ψT
.

The lower qubit is measured in the Z-basis, and S is the Clifford gate Si = exp
(
−iπ4Zi

)
.

Thus, the magic states Eq. (8) boost the free operations to quantum computational uni-
versality.

2.2.3 A variant of QCM

We observe that in QCM, the Clifford unitaries can be eliminated without loss of compu-
tational power [40, 55]. Given the magic states, the computational power rests with the
Pauli measurements.

This can be seen as follows. Consider the most general QCM, consisting of a sequence
of Clifford gates interspersed with Pauli measurements, both potentially conditional on
the outcomes of prior Pauli measurements. Now, starting with the last and ending with
the first, the Clifford unitaries may be propagated forward in time, past the last Pauli
measurement. Since the computation ends with the last measurement (all measurement
outcomes have been gathered), after propagation the unitaries may be dropped without
loss.
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The only effect of the Clifford unitaries is that, in propagation, they change the mea-
sured observables by conjugation. But, by the very definition of the Clifford group, Pauli
measurements remain Pauli measurements under conjugation by Clifford unitaries. Thus,
for every QCM circuit consisting of Clifford unitaries and Pauli measurements, there is a
computationally equivalent circuit that consists of Pauli measurements only.

This observation impacts the interpretation of the results of this paper. Theorems 4
and 5 below deal with the question of when Clifford-covariant Wigner functions exist,
and Theorems 7 and 8 with the question of when Wigner functions exist that represent
Pauli measurements positively. With the observation just made, the latter two are more
important for QCM. However, we still address Clifford covariance, as it has traditionally
been invoked in the discussion of QCM [15], and as it is of general interest.

2.3 Wigner functions
The Wigner function [33] forms the basis of an alternative formulation of quantum mechan-
ics. In this formalism, a linear operator Y is represented by a Wigner function WY over
the position-momentum phase space. The Wigner function of a state is a quasiprobability
distribution, which behaves much like a probability distribution over phase space, the basis
of classical statistical mechanics. The essential difference is that the Wigner function can
take negative values. This property allows the Wigner function to represent quantum me-
chanics, and as a result, negativity in the Wigner functions of states has been proposed as
a measure that distinguishes classically behaving subsystems of quantum mechanics from
those which are genuinely quantum [56, 6].

Many other quasiprobability representations of quantum mechanics have also been
defined. They are related through the Stratonovich-Weyl (SW) correspondence—a set
of criteria that reasonable quasiprobability representations over generalized phase spaces
should satisfy [49] (also see [50]). Functions in the SW class have the form WY : V → C,
where WY represents the linear operator Y over phase space V, and Wρ of a state ρ is a
quasiprobability distribution. In general, observables are represented by a dual object, the
effect function Θ, which maps linear operators Y onto ΘY : V −→ C.2

The SW criteria are as follows:

(sw0) (Linearity): the map Y �WY is one-to-one and linear,

(sw1) (Reality):
WY †(x) = (WY (x))∗ ∀x ∈ V,

(sw2) (Standardization): ∫
V
dµ(x)WY (x) = Tr(Y ),

(sw3) (Covariance):
Wg·Y (g · x) = WY (x) ∀x ∈ V ∀g ∈ G

where G is a symmetry group of the phase space.

(sw4) (Traciality): ∫
V
dµ(x)WY1(x)ΘY2(x) = Tr(Y1Y2).

2The original Wigner function is, up to normalization, self dual.
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The purpose of the traciality condition (sw4) is to represent the Born rule in a phase-space
formulation of quantum mechanics.

The interpretation of negativity in quasiprobability functions as an indicator of gen-
uine quantumness, with many applications in quantum information processing, has also
been proposed for discrete Wigner functions—quasiprobability functions used for describ-
ing finite-dimensional quantum mechanics. For a system of n qudits, each with local Hilbert
space dimension d, the discrete Wigner function is usually defined over the finite phase
space F2n

d [34] or Z2n
d [36, 37], where Fd is the field with d elements and Zd is the integers

mod d. When d = p is prime, Fd ∼= Zd, and so the two choices for the phase space are
equivalent. The scope of the former choice is limited to the case where the local Hilbert
space dimension d = pN is a power of a prime since a finite field with d elements exists
if and only if d is a power of a prime. In this case, there is a map ι : F2

pN
→ F2N

p which
preserves the structure of the phase space, and so Wigner functions defined over F2n

pN
coin-

cide with Wigner functions defined over Z2nN
p up to relabeling of phase space points [37].

Therefore, choosing the phase space defined over FpN is equivalent to representing each
d = pN -dimensional qudit as a system of N independent p-dimensional qudits with the
overall phase space Z2nN

p . Many other phase spaces for finite-dimensional systems have
also been proposed, see [57] for a review. For the purposes of the present paper we are
interested in Wigner functions defined over the phase space V := Z2n

d .
One particularly useful example of a discrete Wigner function that satisfies the SW

criteria is Gross’ Wigner function for systems of odd-dimensional qudits [36]. This is a
Wigner function defined over the phase space V = Z2n

d where d is odd. To start we choose
the phase convention of the Pauli operators in Eq. (2) as in Eq. (5). Then points in phase
space are associated with phase space point operators defined as

Au = 1
dn

∑
v∈E

ω−[u,v]T †v , ∀u ∈ V. (9)

These operators form an orthonormal basis for the space of Hermitian operators on dn-
dimensional Hilbert space. Therefore, for any density matrix ρ representing a quantum
state, there is a decomposition in phase point operators of the form

ρ =
∑
u∈V

Wρ(u)Au. (10)

The coefficients in this expansion define the Wigner function Wρ : V → R of the state ρ.
Equivalently, by orthogonality, the Wigner function can be defined as

Wρ(u) = 1
dn

Tr(Auρ).

This Wigner function has several properties which make it useful for describing QCM.
First, it is covariant with respect to all Clifford-group operations. That is, for any linear
operator Y and for all g ∈ Cln it holds that

Wg(Y )(Sgv + ag) = WY (v). (11)

Therein, Sg is the symplectic matrix introduced in Eq. (7) and ag is a translation vector,
both dependent on g. This follows from the fact that phase point operators map to phase
point operators under conjugation by Clifford-group elements:

g(Au) = ASgu+ag ∀u ∈ V ∀g ∈ Cln.
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The Wigner function also satisfies the condition of positivity preservation of the Wigner
function under Pauli measurements. That is, if a state ρ has a non-negative Wigner func-
tion and a Pauli measurement is performed, the resulting postmeasurement state also has
a non-negative Wigner function. This follows from the fact that under Pauli measurements
phase point operators map to probabilistic combinations of phase point operators.

In fact, the update of the phase point operators under Clifford unitaries and Pauli
measurements can be computed efficiently classically. This leads to an efficient classical
simulation algorithm for QCM based on sampling from the Wigner probability distribution
of the input state that applies whenever the Wigner function of the input state is non-
negative. This can be formalized in the following theorem.

Theorem 1 ([15], adapted) Consider QCM on n qudits of odd prime dimension d. If the
initial magic state ρ = ρ(1)1 ⊗ ρ(2)2 ⊗ .. ⊗ ρ(n)n satisfies Wρ ≥ 0, then any quantum
computation in the magic state model starting with ρ can be efficiently classically simulated.

We have rephrased this theorem here to make the statement self-contained. For the original
formulation, see Theorem 1 in [15]. This result can be extended to apply to QCM on qudits
of any odd dimension [58]. When the discrete Wigner function of the input state takes
negative values classical simulation is still possible [38], but it is inefficient in general.

Many no-go results have provided obstructions to a similar result for systems of even-
dimensional qudits. For example, it has been shown that no Wigner function in the SW
class for systems of multiple qubits can be Clifford covariant [43]. Quasiprobability rep-
resentations for systems of even-dimensional qudits have been defined for the purpose of
describing QCM, e.g. [44, 42, 39, 59, 48], but these generally require relaxing some of the
constraints provided by the SW criteria. In this paper we explore the underlying reasons
for the difference between Wigner functions in the SW class of even- and odd-dimensional
qudits in terms of Clifford covariance and positivity preservation under Pauli measure-
ments.

2.4 Cohomology
The purpose of the section is to explain that the function β defined in Eq. (4) and the phase
function Φ̃ defined in Eq. (7) are cohomological objects. As it will turn out, β governs the
existence of Wigner functions that represent Pauli measurement positively, and Φ̃ governs
the existence of Wigner functions that are Clifford covariant. Thus, Clifford covariance of
Wigner functions and positive representation of Pauli measurement by Wigner functions
are cohomological properties of the Clifford and Pauli groups. Also see Ref. [5] for a more
detailed exposition.

2.4.1 Motivation

Here we lay out a short path to recognizing β and Φ̃ as cohomological objects. A problem
gets us started. The Pauli operators contain in their definition an arbitrary phase γ, cf.
Eq. (2), with no physical significance. Respecting the constraint on γ imposed by the
condition (Ta)d = I, ∀a ∈ E, the phases γ can be changed by any ν : E → Zd as

γ 7−→ γ + ν, if d is odd,
γ 7−→ γ + 2ν, if d is even. (12)

The corresponding effect on β is, irrespective of whether d is even or odd,

β(a, b) −→ β(a, b) + ν(a) + ν(b)− ν(a+ b) mod d. (13)
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An object can be of physical significance only if it is invariant under the gauge transfor-
mations of Eq. (12). Can we construct such objects out of the function β?

The prepared eye recognizes Eq. (13) as a cohomological equivalence transformation
β −→ β+ dν, where dν : (a, b) 7→ ν(a) + ν(b)− ν(a+ b) is the coboundary of ν. This gives
a clue: the cohomology classes [β] are invariant objects!

Indeed, as we demonstrate in Section 5, those cohomology classes determine the ex-
istence of Wigner functions that represent Pauli measurement positively. To provide the
foundation for the cohomological formulation, in Section 2.4.2 we describe the chain com-
plex where β lives.

The motivation for the cohomological description of Φ̃ is analogous. With Eq. (7), the
effect of the equivalence transformation Eq. (12) on Φ̃ is

Φ̃g(a) −→ Φ̃g(a) + ν(a)− ν(Sga) mod d. (14)

Again, this looks like an equivalence transformation in group cohomology, Φ̃ −→ Φ̃− dhν.
Therein, dh is the coboundary operator in group cohomology. The bi-complex where Φ̃
lives is introduced in Section 2.4.3. As we demonstrate in Section 4, the existence of
Clifford-covariant Wigner functions hinges on a cohomological invariant extracted from Φ̃.

2.4.2 β is a cocycle

Let C∗ = (C0, C1, C2, C3) denote the chain complex for which Ck is defined to be the free
Zd-module with basis [v1|v2| · · · |vk], where vi ∈ E and

[vi, vj ] = 0, ∀i, j = 1, · · · , k. (15)

Note that C0 = Zd. The boundary map ∂ is given by the formula

∂[v1|v2| · · · |vk] = [v2| · · · |vk] +
(
k−1∑
i=1

(−1)i[v1| · · · |vi + vi+1| · · · |vk]
)

+ (−1)k[v1| · · · |vk−1].

(16)
There is also an associated cochain complex C∗ whose k-cochains Ck are given by Zd-
module maps (i.e. Zd-linear functions) f : Ck → Zd. The coboundary map δ is defined by
the formula δf(−) = f(∂−).

With the identification β([a|b]) := β(a, b), the above definitions make β a 2-cochain
in C∗, i.e. β ∈ C2. But we can say more; β is in fact a cocycle, dβ = 0. Namely,
associativity of operator multiplication, Ta(TbTc) = (TaTb)Tc, implies, for all a, b, c ∈ E
such that [a, b] = [a, c] = [b, c] = 0,

β(b, c)− β(a+ b, c) + β(a, b+ c)− β(a, b) = 0.

The surface F := [b|c]− [a+b|c]+[a|b+c]− [a|b] is the boundary of the volume V = [a|b|c],
F = ∂V . Thus, 0 = β(∂V ) = dβ(V ), for all volumes V . Hence,

dβ = 0, (17)

as claimed. The equivalence class of β is now defined by

[β] := {β + dν, ν ∈ C1}. (18)

The equivalence classes of 2-cocycles form the second cohomology group H2(C,Zd). They
are independent of the choice of phase γ in Eq. (2).
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To provide a first application of the cohomological formulation, recall that in Sec-
tion 2.1.1 we discussed whether the phase factors in the Pauli operator multiplication
table of Eq. (4) can be eliminated by a clever choice of the phase convention γ. We now
find that this is a topological question. Namely, with Eqs. (12) and (18), the phase factor
ωβ can be removed if and only if [β] = 0. Observations 1 and 2 may thus be reformulated
in a cohomological fashion as (i) If d is odd then for any n it holds that [β] = 0, and (ii)
If d = 2 then for any n ≥ 2 it holds that [β] 6= 0.

2.4.3 The group cocycles Φ̃ and Φcov

In this section we will regard Φ̃, introduced in Eq. (7), as a cocycle and relate its cohomology
class to certain properties of Wigner functions. For this we need to introduce a chain
complex which is slightly different than the one used above. The main difference is that we
remove the commutativity constraint imposed on tuples constituting the basis of the chain
complexes. We define a chain complex C̃∗ = (C̃0, C̃1, C̃2, C̃3). Here C̃k is the free Zd-module
with basis consisting of the tuples [v1|v2| · · · |vk] where vi ∈ E. The boundary map is the
same as in Eq. (16). The associated cochain complex is denoted by C̃∗ = (C̃0, C̃1, C̃2, C̃3)
and the coboundary map δ : C̃k → C̃k+1 is induced by the boundary map as before.
Note that by definition C̃1 = C1 and C̃1 = C1, thus in this case we remove the extra
decoration for simplicity of notation. We also note that the (co)chain complex defined
here is the standard complex (which is called the bar construction) that computes the
group (co)homology of the abelian group E.

For a symmetry group specified by a subgroup G ⊆ Cln, we consider the bicomplex
Cp(G, C̃q); see also [5, Section 5.2]. The bicomplex Cp(G, C̃q) comes with two types of
coboundaries: group cohomological dh : Cp(G, C̃q)→ Cp+1(G, C̃q), and dv : Cp(G, C̃q)→
Cp(G, C̃q+1) induced by δ.

The phase function Φ̃ : G→ C1 is per definition a 1-cochain in group cohomology. Its
coboundary, a 2-cochain, is

(dhΦ̃)g,h(a) := Φ̃h(a)− Φ̃gh(a) + Φ̃g(Sha). (19)

In fact, Φ̃ is not only a 1-cochain but a 1-cocycle, i.e., dhΦ̃ = 0. Namely, with the
associativity of matrix multiplication, it holds that (gh)(Ta) = g(h(Ta)), ∀g, h ∈ G, ∀a ∈ E.
Evaluating both sides using Eq. (7) yields Φ̃gh(a) = Φ̃h(a) + Φ̃g(Sha), ∀g, h ∈ G and
∀a ∈ E. Thus, with Eq. (19), (dhΦ̃)g,h(a) = 0, for all g, h ∈ G and all a ∈ E. Φ̃ is indeed
a group cocycle.

This group cocycle may be trivial or nontrivial. Consider a 0-cochain ν in group
cohomology. Its coboundary, a 1-cocycle, is

(dhν)g(a) := ν(Sga)− ν(a). (20)

We define the group cohomology classes

[Φ̃] = {Φ̃ + dhν, ∀ν ∈ C1}.

A cocycle Φ̃ is trivial iff it can be written in the form Φ̃ = dhν, for some ν ∈ C1. A class
[Φ̃] is trivial, [Φ̃] = 0, if and only if it contains Φ̃ ≡ 0.

The cocycle Φ̃ may not only be evaluated on edges a ∈ E but, by linear extension, on
all 1-chains: A 1-chain is a Zd-linear sum of elements in E and we define

Φ̃g(
∑
j

αj [aj ]) =
∑
j

αjΦ̃g(aj), αj ∈ Zd, aj ∈ E,
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where each Φ̃g(aj) is determined by Eq. (7). Subsequently, we will have occasion to evaluate
Φ̃ on boundaries ∂f , for f ∈ C2. When G = Cln it is easily verified that, for boundaries
∂f ,

Φ̃g(∂f) = Φ̃[g](∂f), ∀g ∈ Cln,

where [g] ∈ Cln/Pn. That is, when Φ̃ is evaluated on a boundary, it depends on its first
argument g only through the equivalence class [g].

To formalize this property in general, let N ⊂ G denote the subgroup of symmetries g
such that Sg is the identity transformation. The quotient group Q = G/N is the essential
part of the symmetries acting on the complex. Let B̃1 denote the image of the boundary
map ∂ : C̃2 → C1. We write Ucov for the set of Zd-module maps B̃1 → Zd. We choose a
set-theoretic section θ : Q→ G of the quotient map π : G→ Q; i. e., θ(π(g)) ∈ π(g). Then
Φcov ∈ C1(Q,Ucov) is defined to be the composite

Φcov : Q θ−→ G
Φ̃−→ C1 dv−→ Ucov (21)

where the last map can also be thought of as the restriction of a Zd-module map C1 → Zd
to the boundaries B̃1. More explicitly we have

Φcov(q, ∂f) = dvΦ̃θ(q)(f) = Φ̃θ(q)(∂f)

for any q ∈ Q and f ∈ C̃2. Although C̃1 = C1, the object Ucov is different from its coun-
terpart U introduced in [5, Eq. (39)] as part of the symmetry discussion in contextuality.
See also Theorem 3 below.

Like Φ̃, Φcov is also a group cocycle, dhΦcov = 0. The cocycle class of Φcov is given by

[Φcov] = {Φcov + dhν, ν ∈ Ucov}.

[Φcov] is the object of interest for Wigner function covariance.
As a first application of the group cohomological formalism, recall Theorem 37 from [36],

on the structure of the Clifford group in odd dimension. Items (i) and (iii) of that theorem
read: (i) For any symplectic S, there is a unitary operator θ(S) such that θ(S)Taθ(S)† =
TSa; (iii) Up to a phase, any Clifford operation is of the form U = Tb θ(S), for a suitable
b ∈ E and symplectic transformation S.

Comparing the relation in item (i) with the general relation Eq. (7), we find that
Φ̃θ(S) = 0 for all symplectic S, w.r.t. the phase convention γ chosen in [36]. Thus, in
particular, Φ̃θ(S)(∂f) = 0 for all f ∈ C̃2. Since Pauli flips don’t change Φ̃ on boundaries,
Φ̃Tb θ(S)(∂f) = 0 for all f ∈ C̃2 and all b ∈ E. But with item (iii) this covers the entire
Clifford group. I.e., there is a phase convention γ such that Φcov ≡ 0. The phase-convention
independent version of this statement is

Observation 3 For the Clifford group Cln in any odd dimension d it holds that [Φcov] = 0.

2.4.4 Splitting and the group cocycle ζ

For a subgroup G ⊂ Cln define N = G∩Pn as before. Since N is a normal subgroup we can
consider the quotient group Q = G/N . A structural question about G is how it is put back
together from its two parts N and Q. A particularly simple composition is the semi-direct
product, G ∼= Q nN . If it applies, then G is said to ‘split’. But the semi-direct product
is only one among a number of ways to compose Q and N . Those ways are classified by a
cohomology group [60].
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The notion of splitting is of interest here because, as we shall prove in Section 4.4.1, it
governs the existence of the faithful group action which is required in the l.h.s. of Eq. (11)
and is, thus, a precondition for covariance.

Let us formulate splitting as a cohomological property. We identifyQ with the subgroup
of Sp(E) to which it is isomorphic by Eq. (7). For convenience, we denote Ta modulo
phase by ta, such that Pn = {ta, a ∈ E} ∼= E. Any set-theoretic section θ : Q→ G has the
following properties:

θ(S)ta(θ(S))† = tSa, ∀ta ∈ E, (22a)
g = tαgθ(Sg), ∀g ∈ G, (22b)

θ(S1)θ(S2) = tζ(S1,S2)θ(S1S2), ζ : Q×Q −→ E (22c)

Herein tαg , tζ(S1,S2) ∈ N . The section θ is not unique. From any given θ we may switch to
new θ′ via

θ′(S) = t(S)θ(S), t(S) ∈ N, ∀S ∈ Q. (23)

The function ζ changes under the transformation in Eq. (23), and the set [ζ] of functions
ζ ′ that can be reached from ζ via Eq. (23) is an element of the second cohomology group
H2(Q,E). The group G splits if and only if ζ vanishes for a suitable choice of θ. In this
case we say that [ζ] = 0 ∈ H2(Q,E). See Eq. (61) in the appendix for a particular choice
of the cocycle ζ.

2.5 Contextuality
Unlike the previous parts of this background section, the material on contextuality dis-
cussed here is not necessary to understand the main results of this paper, Theorems 4 –
8. However, it is helpful for connecting to the broader picture. Namely, two previously
established theorems on state-independent contextuality [5], restated below as Theorems 2
and 3, are structurally akin to Theorems 4 and 7, on the existence of Wigner functions
with “nice” properties. They invoke the same cohomological conditions. This background
portion prepares for the discussion in Section 6.

Contextuality is a foundational property that distinguishes quantum mechanics from
classical physics. A priori, one may attempt to describe quantum phenomena by so-called
hidden variable models (HVMs) in which all observables have predetermined outcomes
that are merely revealed upon measurement. A probability distribution over such prede-
termined outcomes is then intended to mimic the randomness of quantum measurement.
An additional constraint on HVMs is the assumption of noncontextuality: the value as-
signed to any given observable just depends on that particular observable, and not on any
compatible observable that may be measured in conjunction. The Kochen-Specker theo-
rem says that, in Hilbert spaces of dimension greater than two, no noncontextual hidden
variable model can reproduce the predictions of quantum mechanics. Since noncontextual
hidden variable models fail in this realm, quantum mechanics is said to be “contextual”.

The original proof of the Kochen-Specker theorem is intricate. However, when sac-
rificing a modest amount of generality, namely the case of Hilbert space dimension 3, a
very simple proof can be given—Mermin’s square [19]. Here we review two types of proofs
of the Kochen-Specker theorem, the parity-based proofs (Mermin’s square is the simplest
example), and the symmetry-based proofs.
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Parity-based proofs. The main examples of parity-based proofs are the well-known
Mermin’s square in dimension 4 and Mermin’s star in dimension 8 [19]. In those examples,
the proof is based on a cleverly chosen set of Pauli observables. However, for parity proofs
to work, the observables don’t need to be of Pauli type; it suffices that all their eigenvalues
are kth roots of unity for some fixed k ∈ N.

Parity proofs have a cohomological formulation. With the cocycle β and corresponding
cohomology class [β] in H2(C) defined as in Section 2.4, but this time for a set O of
observables whose eigenvalues are all powers of ω (not necessarily, but possibly, Pauli
observables), we have the following result.

Theorem 2 ([5]) For a set of observables O with all eigenvalues of form ei2πm/k, for m, k ∈
N and k fixed, a parity-based contextuality proof exists if and only if [β] 6= 0.

Symmetry-based proofs. Proofs of the Kochen-Specker theorem may also be based on
the transformation behavior of a set O of observables under a symmetry group G [5]. To
be a symmetry group, G (i) needs to map the set O to itself up to phases that preserve
the constraint on the eigenvalue spectrum, and (ii) needs to preserve algebraic relations
among the transformed observables. Again, the symmetry-based contextuality proofs have
a cohomological formulation.

Theorem 3 ([5]) For a given set O of observables as above, and a corresponding symmetry
group G, if [Φ] 6= 0 ∈ H1(Q,U) then O exhibits state-independent contextuality.

There is a small difference between Φ in Theorem 3 and Φcov from Section 2.4.3. Both
phase functions are defined only on boundaries ∂f where f = [a|b]. However, for Φ all f
are constraint to [a, b] = 0, whereas for Φcov as defined in Section 2.4.3 this extra condition
is not imposed.

3 Wigner functions from operator bases
In this section we define the Wigner functions we are concerned with in this paper, namely
Wigner functions based on operator bases, and derive elementary properties of them. Si-
multaneously, we also define matching effect functions. This lays the groundwork for
Sections 4 and 5, where we discuss Clifford covariance of Wigner functions and positive
representation of Pauli measurement, respectively.

Quasiprobability functions derived from operator bases are a natural choice: the orig-
inal Wigner function [33], its finite-dimensional adaptions [34], and thereof in particular
Gross’ Wigner function in odd dimension [36, 37] are all of this form3.

We remark that, for even local dimension d = 2, if we move beyond operator bases and
admit non-unique probability functions defined on larger (generalized) phase spaces then
Theorem 1 is known to extend [44, 42]. However, moving into this territory, we also meet
probability functions that represent universal QCM [48]. No negativity is needed, neither in
the states nor the operations! For those scenarios, since negativity never occurs, it cannot
be a precondition for speedup.

3Note that in the infinite-dimensional case of the original Wigner function, the set of phase point
operators is not a basis in the standard sense, i.e., it is not a Hamel basis, but it is a Hilbert basis for the
ambient space that the density operators live in viewed as an inner product space (see e.g. Ref. [61, §9]
for details on this distinction). In finite dimensions there is no such distinction.
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Quasiprobability functions derived from operator bases represent a calmer and more
standard scenario, and therefore we settle their case here. For the remainder of this paper,
we impose the condition

(OB) For any linear operator Y , a corresponding Wigner function WY satisfies

Y =
∑
v∈V

WY (v)Av, (24)

where the operators {Av, v ∈ V } form an operator basis and the phase space is
V = Znd × Znd .

As before in Section 2.3, in addition to the quasiprobability functionW representing quan-
tum states, we define a dual object, the effect function Θ, representing observables. For
any linear operator Y , ΘY : V −→ C.

E vs. V . We briefly comment on the distinction between the sets E of Pauli labels and
the phase space V . Both are isomorphic to the group Znd ×Znd , but they represent different
physical objects. E, as introduced right after Eq. (2), is the set of Pauli operators modulo
phase. The multiplication of Pauli operators induces an addition in E, endowing it with a
group structure. V , introduced right above through Eq. (24), is the set of points in phase
space. Once an origin is fixed, points in phase space may also be added; but in the present
paper we make no use of this operation. Finally, the property (SW3) of Pauli covariance
implies an action of E on V ,

E 3 a : v 7→ a(v) = (a+ v) ∈ V, ∀v ∈ V. (25)

Some of our results refer to the SW criteria, in the following formulation adapted to finite-
dimensional Hilbert spaces:

(SW1) (Reality):
WY †(u) = (WY (u))∗ ∀u ∈ V,

(SW2) (Standardization): ∑
u∈V

WY (u) = Tr(Y ),

(SW3) (Pauli covariance):

WTa(Y )(u+ a) = WY (u) ∀u ∈ V ∀a ∈ E,

(SW4) (Traciality): ∑
u∈V

WY1(u)ΘY2(u) = Tr(Y1Y2).

Condition (OB) implies (sw0) but is not implied by it. (SW2) and (SW4) are obtained
from (sw2) and (sw4) by choosing a natural measure µ. As opposed to (sw3), (SW3) refers
to a specific symmetry group G—the Pauli group—and a particular action of the symmetry
group on the phase space.

Among the Wigner functions permitted by the constraints (OB) and (SW1)–(SW4),
we are interested in those that transform covariantly under all Clifford gates and represent
Pauli measurement positively. Note that we do not require diagram preservation—the
assumption that the representation of a composition of processes is identical to the compo-
sition of the representations of the processes [62]. Full diagram preservation requires this
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for both parallel and sequential composition of states and operations. In particular, for
parallel composition of states, diagram preservation requires that for a product state ρ⊗σ
we have Wρ⊗σ(u⊕ v) = Wρ(u)Wσ(v). This is a strong assumption which, though reason-
able for some local realist models, is not satisfied by several models which are useful for
describing quantum computation, e.g. [44, 63, 42, 48, 64]. In fact, this assumption is incom-
patible with the ability of a model to simulate contextuality as in quantum computation
on multiple qubits [65]. The conditions imposed on quasiprobability distributions in [62]
include diagram preservation and imply (OB), (SW1), (SW2), and (SW4) [46, 66]. If a
quasiprobability distribution from [62] positively represents the entire stabilizer subtheory,
it additionally fulfills (SW3) [46] and, thus, all of our conditions.

Regarding the effect function Θ, we observe that all such functions admissible by (OB)
and (SW4) take a simple form,

ΘY (v) = Tr(Y Av), ∀v ∈ V. (26)

Namely, for Y = Au in Eq. (24) the condition (OB) implies that WAu(v) = δuv. Using
this in the traciality condition (SW4) for Y1 = Av implies Eq. (26). Note furthermore that
Eq. (26) implies (SW4).

We further observe that for the projectors Πa,s corresponding to the measurement of
the Pauli observable Ta with outcome s, for all Θ, W satisfying (OB), (SW2), (SW4), it
holds that ∑

s

ΘΠa,s(v) = 1, ∀v ∈ V. (27)

Namely,
∑
s ΘΠa,s(v) =

∑
sTr(Πa,sAv) = Tr(Av). The last expression equals

∑
u∈V WAv(u) =∑

u∈V δuv = 1, with (SW2), yielding Eq. (27).
To prepare for the subsequent discussion, we parametrize the phase point operators.

Pauli covariance (SW3) holds if and only if

Av = 1
dn

∑
b

ω−[v,b]cbT
†
b , ∀v ∈ V, (28)

where cb ∈ C for all b, V = Znd × Znd .
Additionally imposing Standardization (SW2) and the fact that the operators Av span

an operator basis (OB) is equivalent to the following two conditions on the coefficients cb
in Eq (28), respectively:

c0 = µγ(0), (29a)
cb 6= 0, ∀b. (29b)

With these properties established, we are now ready to address the questions of Clifford
covariance and positive representation of Pauli measurement.

4 Clifford covariance
In this section we establish a necessary and sufficient condition for the existence of Clifford
covariance of Wigner functions constructed from operator bases, for varying local Hilbert
space dimension and number of particles. There are cohomological obstructions to the
existence of such Wigner functions, and in even local dimension these obstructions don’t
vanish.
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4.1 When are Wigner functions Clifford covariant?
We start out from the following

Definition 1 For any subgroup G ⊆ Cln, a Wigner function W is called G-covariant if

Wg(Y )(Sgu+ ag) = WY (u) ∀u ∈ V ∀g ∈ G (30)

where Sg is the symplectic transformation defined in Eq. (7) and ag ∈ E. When G = Cln,
we say that W is Clifford covariant.

This definition, in the most general case of full Clifford covariance, is analogous to the
one given in [36] for odd dimension d; cf. Theorem 41 therein. From the perspective of
classical simulation of QCM, the usefulness of the above covariance property is that the
map g : u 7→ Sgu + ag can be efficiently computed, for all g ∈ Cln. We remark that the
addition is between an element of V and one of E, cf. Eq. (25). For consistency, we observe
that in the limiting case of G = Pn, Sg = I for all g ∝ Tu ∈ Pn, and Eq. (30) reduces to
the Pauli covariance condition (SW3).

It is useful to restate the covariance condition Eq. (30) in terms of phase point operators.
With Eq. (24) it holds that WAw = δw(v). Now, for any g ∈ G we have

g(Aw) =
∑
vWg(Aw)(v)Av

=
∑
vWg(Aw)(Sgv + ag)ASgv+ag

=
∑
vWAw(v)ASgv+ag

=
∑
v δw(v)ASgv+ag

= ASgw+ag

(31)

Therein, in the second line we have relabeled the summation index, and in the third line
we have used the covariance condition Eq. (30). Thus, Eq. (30) implies Eq. (31).

Now we show the reverse. Assuming Eq. (31), the operator g(Y ) can be expanded in
two ways

g(Y ) =
∑
v

WY (v)g(Av) =
∑
v

WY (v)ASgv+ag ,

and
g(Y ) =

∑
v

Wg(Y )(v)Av =
∑
v

Wg(Y )(Sgv + ag)ASgv+ag

Comparing the r.h.s.-es, and noting that by (OB) the expansions are unique, Eq. (30)
follows.

Both arguments combined show that a Wigner function W satisfying (OB) is G-
covariant if and only if

g(Av) = ASgv+ag , ∀v ∈ V, ∀g ∈ G. (32)

4.2 Existence of Clifford-covariant Wigner functions
Given a particular Wigner function in terms of phase point operators, Clifford covariance
may be verified using the criterion Eq. (32). Now we are concerned with the question of
whether for a system of n qudits of d levels a Clifford-covariant Wigner function exists. The
result of this section is a cohomological criterion for the existence of a Clifford-covariant
Wigner function.

Theorem 4 For any integers n ≥ 1, d ≥ 2, a Clifford-covariant Wigner function according
to (OB) exists if and only if [Φcov] = 0 ∈ H1(Q,Ucov).

Accepted in Quantum 2023-03-27, click title to verify. Published under CC-BY 4.0. 16



Proof of Theorem 4. “Only if”: Suppose W is Clifford covariant. Then, with Eq. (32),
Ta(Av) = Av+y(a), ∀a ∈ E, where for readability we write y(a) instead of ag with g =
Ta. First, we want to show that the function y : E ∼= Z2n

d → V ∼= Z2n
d is invertible.

TaTb(Av) = Ta+b(Av) implies that y is linear. Therefore, y is invertible if and only if its
kernel is trivial, Ker(y) = {0}. We expand Av =

∑
b∈E cb(v)T †b . Note that, in contrast to

Ansatz (28), this expansion does not restrict Av. Now assume that Ker(y) 3 a 6= 0. Then∑
b cb(v)T †b = Av = Ta(Av) =

∑
b cb(v)ω[b,a]T †b ∀v or, equivalently,

cb(v) = 0 ∀b ∈ E : [b, a] 6= 0, ∀v ∈ V.

For any a 6= 0 there is a b ∈ E such that [b, a] 6= 0, and hence a b ∈ E such that cb(v) = 0,
∀v. Since this contradicts (OB), y must be invertible. We may thus write

Ty−1(w)(A0) = Aw, ∀w ∈ V. (33)

Because of Clifford covariance, for any g ∈ Cln it holds that g(A†0) = A†ag . Therein, we have

g(A†0) =
∑
b c
∗
b(0) g(Tb) =

∑
b c
∗
b(0)ωΦ̃g(b) TSgb, and, with Eq. (33), A†ag =

(
Ty−1(ag)(A0)

)†
=∑

b ω
[y−1(ag),b]c∗b(0)Tb. For any g ∈ Cln and any pair b, Sgb ∈ E it follows that

cSgb(0) = cb(0)ω[y−1(ag),Sgb]−Φ̃g(b). (34)

Thus, for the entire Clifford orbit 〈b〉 of any b ∈ E, the expansion coefficients cb(0) have the
same magnitude, and differ only by phase factors ωm, m ∈ N. They can thus be written
in the form

cb(0) = c〈b〉 ω
ν(b),∀b ∈ E, (35)

where c〈b〉 ∈ C only depends on the Clifford orbit 〈b〉 of b, and ν : E −→ Zd.
Further inspecting Eq. (34), the l.h.s. depends on g only through Sgb ∈ E, whereas

the r.h.s. has the a priori more general dependence through Φ̃g. Comparing Eqs. (34) and
(35), we find that the functions ν and Φ̃ are mutually constrained by the relation

ν(Sgb)− ν(b) = [y−1(ag), Sgb]− Φ̃g(b), ∀b ∈ E, ∀g ∈ Cln.

Now consider a face f ∈ C̃2 with boundary ∂f = [a] + [b]− [a+ b], and add up the above
relations for the edges in the boundary. Because of its linearity, the commutator term then
vanishes, and we obtain

ν(g∂f)− ν(∂f) = −Φ̃g(∂f) = −Φcov([g], ∂f), ∀f ∈ C2(C′), ∀g ∈ Cln,

where g∂f := [Sga] + [Sgb]− [Sg(a+ b)]. Thus, Φcov = dh(−ν), i.e., [Φcov] = 0.

“If”: Assume that [Φcov] = 0. Thus, there is a phase convention γ such that Φ̃(γ)|B̃1
≡ 0.

But this means that Φ̃(γ)
g (·) is a linear function for any g ∈ Cln, and we may write it as

Φ̃(γ)
g (a) = [xg, a],

for suitable xg, g ∈ Cln. LetW (γ) be the Wigner function defined by the phase point oper-

ators A(γ)
v = 1

dn
∑
b ω
−[v,b]

(
T

(γ)
b

)†
. Since the A(γ)

v constitute a special case of Ansatz (28)
with Condition (29b), we already know that they span an operator basis (OB). Moreover,
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W (γ) is Clifford covariant. Namely,

g
(
A

(γ)
v

)
= 1

dn
∑
b ω
−[v,b] g

[(
T

(γ)
b

)†]
= 1

dn
∑
b ω
−[v,b]−Φ̃(γ)

g (b)
(
T

(γ)
Sgb

)†
= 1

dn
∑
b ω
−[v+xg ,b]

(
T

(γ)
Sgb

)†
= 1

dn
∑
b ω
−[Sgv+Sgxg ,b]

(
T

(γ)
b

)†
= A

(γ)
Sgv+Sgxg

This is Eq. (32) with ag = Sgxg. �

Theorem 4 has the following generalization, which we will refer to in Section 4.4.

Corollary 1 For any number n ≥ 1 of qudits of local dimension d ≥ 2, be G ⊆ Cln a
subgroup of the Clifford group such that Pn ⊂ G. A G-covariant Wigner function according
to (OB) exists if and only if [Φcov] = 0 ∈ H1(Q,Ucov).

The proof is exactly the same as for Theorem 4.

4.3 Even vs. odd dimension
For odd dimension d, and all numbers n of qudits, a Clifford-covariant Wigner function
satisfying the conditions (OB), (SW1)–(SW4) has been explicitly constructed in [36]. In
the present formalism, the existence of a Clifford-covariant Wigner function satisfying (OB)
follows by Observation 3 and Theorem 4.

In even dimension we have the following result.

Theorem 5 If the local dimension d is even, then, for any number n of local systems,
Clifford-covariant Wigner functions satisfying (OB) do not exist.

Remark: There is a related no-go theorem in [46], addressing the impossibility of posi-
tive representation of the stabilizer sub-theory in even dimension. Here, we assume much
less about Wigner functions than the related no-go theorem in [46], namely only (OB). We
point out specifically that the assumption of diagram preservation is not required.

Furthermore, a special instance of Theorem 5 was proved in [67], namely for the multi-
qubit case of n > 1, d = 2. This result is based on the fact—proved in the same paper—
that the multi-qubit Clifford groups are unitary 3-designs. However, this property does
not extend to other even dimension except powers of 2 [68].

Remark: From the perspective of QCM, Theorem 5 can be bypassed. Namely, as
explained in Section 2.2.3, no computational power is lost in QCM if the Clifford gates
are dispensed with. This holds even though such gates are by convention part of QCM
[32, 15]. If no Clifford gates occur, then the breakdown of Clifford covariance is no problem
for the classical simulation. The computational power, and hence the hardness of classical
simulation, rests with the Pauli measurements.

To prove Theorem 5, we first establish the following statement about the cohomology
class [Φcov] for the n-qudit Clifford group.

Lemma 1 For all even local dimensions d and all qudit numbers n, it holds that [Φcov] 6= 0.
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Proof of Lemma 1. The basic proof strategy is to identify a group element g ∈ Cln and a
2-chain f ∈ C̃2 such that

g∂f = ∂f, and Φ̃g(∂f) 6= 0. (36)

Assume Eq. (36) holds and [Φcov] = 0. From the latter, Φ̃g(∂f) = Φcov([g], ∂f) = ν(∂f)−
ν(g∂f), for some ν ∈ C0(G,Ucov). Therein, with Eq. (36), 0 6= 0—Contradiction. Thus,
the existence of a pair g, f satisfying Eq. (36) implies that [Φcov] 6= 0.

In the following, we show that g, f can be chosen in accordance with Eq. (36), for
all even d. We focus on n = 1; replacing g by g ⊗ I⊗n−1 and all az, ax ∈ Zd by
(az, 0, . . . , 0), (ax, 0, . . . , 0) ∈ Znd immediately generalizes the proof to all n ∈ N. For
concreteness, we set γ(a) = azax, but our final statement is independent of the phase
convention γ.

For d = 4m + 2, m ∈ N0, we consider the Fourier transform g = 1√
d

∑d−1
k,l=0 ω

kl|k〉〈l|,
which is a Clifford unitary that acts by conjugation as

g · g† : X −→ Z −→ X−1 −→ Z−1 −→ X. (37)

Further, f := [u|v], with u = (uz, ux) and v = (vz, vx) by ux = vz = 0 and uz = vx =
2m+ 1. Then

Tu = Z2m+1, Tv = X2m+1 Tu+v =
√
ω

(2m+1)2
Z2m+1X2m+1,

gTug
† = Tv, gTvg

† = Tu, gTu+vg
† = ω−(2m+1)Tu+v.

(38)

Hence, g∂[u|v] = ∂[u|v] but Φ̃g(∂[u|v]) = 0 + 0 + (2m+ 1) = d/2 6= 0 ∈ Zd. Thus, Eq. (36)
applies.

For d = 4m,m ∈ N, we introduce the unitary g = 1
d

∑d−1
k,l=0 ω

mk2
(∑d−1

j=0 ω
mj2+(k−l)j

)
|k〉〈l|,

which is in the Clifford group since

gZg† =
√
ω

2m
ZX2m, gXg† =

√
ω
−2m

Z2mX. (39)

Choosing f := [u|v], with uz = vz = 1, ux = 0, and vx = 2m yields

Tu = Z, Tv =
√
ω

2m
ZX2m Tu+v =

√
ω
d
Z2X2m,

gTug
† = Tv, gTvg

† = ω2mTu, gTu+vg
† = Tu+v.

(40)

Again, ∂f = g∂f , and Φ̃g(∂[u|v]) = 0 + 2m− 0 = d/2 6= 0 ∈ Zd. Eq. (36) thus applies. �

Proof of Theorem 5. The statement is the combined conclusion of Lemma 1 and The-
orem 4. �

4.4 First vs. second cohomology group
The Clifford group splits when d is odd and n ≥ 1, or d = 2 and n = 1. It does not split
for d even and n ≥ 2. [69, 36, 70]. Splitting is also a notion of group cohomology, living at
the second level. Is there a connection with Clifford covariance?

In this section we clarify that such a connection does indeed exist. However, it is not
one-to-one. Namely, splitting of the symmetry group G is necessary for G-covariance, but
not sufficient.

A notion of particular interest for this discussion is the specific faithful group action
of the group G (the Clifford group, or a subgroup thereof) on the phase space V required
by Definition 1. The existence of such a group action is a precondition for covariance. We
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establish that splitting is necessary and sufficient for the existence of the faithful group
action.

Recall that splitting is equivalent to [ζ] = 0 with ζ defined by Eq. (22c), and Q and
Ucov are defined above Eq. (21). In summary we arrive at the following picture:

G-covariance ⇒ ∃ faithful group
action of G on V

m m

[Φcov] = 0 ∈ H1(Q,Ucov) ⇒ [ζ] = 0 ∈ H2(Q,E)

(41)

The vertical arrow on the left is the content of Corollary 1 in Section 4.2. The remaining
three arrows are established in Sections 4.4.1 and 4.4.2 below.

4.4.1 Splitting and faithful group action

With ζ and Q as defined in Section 2.4.4, we have the following result.

Theorem 6 For any given number n of d-level systems, be G ⊆ Cln a subgroup of the
Clifford group such that Pn ⊂ G. A faithful action of G on the phase space V of the form
τ : G× V → V , τg(v) = Sgv + ag exists if and only if [ζ] = 0 ∈ H2(Q,E).

Proof of Theorem 6. “Only if”: Assume that a faithful group action of the form τg(v) =
Sgv + ag does exist.

First, we examine τg for g ∈ Pn = {ta, a ∈ E}, where ta denotes Ta with the phase
modded out. For readability, we write y(a) instead of ag with g = ta. Note that tatb = ta+b
and t†a = t−a. Therefore, ∀g ∈ {ta}, Sg as defined in Eq. (7) is the identity transformation,
i. e., τta(v) = v + y(a).

Using that τg is a group action, we find that y : E ∼= Z2d → V ∼= Z2d is linear:

y(a+ b) = τtatb(v)− v = τta(τtb(v))− v = y(a) + y(b) ∀a, b ∈ E

Moreover, y is injective and, thus, invertible:

y(a) = y(b) ⇒ τta = τtb ⇒ ta = tb ⇔ a = b,

where the second step relies on τ being faithful.
Thanks to the invertibility of y, we can now choose a section θ : Q→ G, see Eq. (22),

such that τθ(S)(v) = Sv. In general, τθ′(S)(v) = Sv + aθ′(S). However, by Eq. (23), we
can always transition from θ′(S) to θ(S) = ty−1[−aθ′(S)]θ

′(S). This ensures that τθ(S)(v) =
τty−1[−aθ′(S)]

(τθ′(S)(v)) = Sv, as desired. By fixing θ we single out a specific representative

ζ from the equivalence class [ζ] ∈ H2(Q,E).
At last, we show that, for this choice of θ, ζ(S1, S2) = 0 ∀S1, S2 ∈ Q. Using Eq. (22)

to go from the first to the second line, we find

S1S2v = τθ(S1)(τθ(S2)(v)) = τθ(S1)θ(S2)(v)
= τtζ(S1,S2)θ(S1S2)(v) = τtζ(S1,S2)(τθ(S1S2)(v)) = S1S2v + y(ζ(S1, S2)), ∀S1, S2 ∈ Q.

Hence y(ζ(S1, S2)) = 0 and, since y is linear and invertible, ζ(S1, S2) = 0 ∀S1, S2 ∈ Q.
This, finally, yields [ζ] = 0 ∈ H2(Q,E).
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“If”: Assume that [ζ] = 0 ∈ H2(Q,E). Then we can choose θ such that ζ(S1, S2) = 0
∀S1, S2 ∈ Q. According to Eq. (22), any g ∈ G can be cast in the form g = tαgθ(Sg).

Let us show that τg(v) = Sgv + αg is a faithful group action of G on V . Observing
that hg = tαhθ(Sh)tαgθ(Sg) = tαhθ(Sh)tαg(θ(Sh))†θ(Sh)θ(Sg) = tαh+Shαgθ(ShSg), we find
τhg(v) = τtαh+Shαg θ(ShSg)(v) = ShSgv + αh + Shαg = Sh(Sgv + αg) + αh = τh(τg(v)), i. e.,
τ is a group action.

Moreover, τ is faithful. Let τg(v) = τh(v), ∀v ∈ V . Then αg = αh, Sg = Sh, and, thus,
g = tαgθ(Sg) = tαhθ(Sh) = h. �

This establishes the vertical arrow on the right of the diagram Eq. (41).

4.4.2 Covariance implies splitting

We have the following result, as a corollary to Theorem 6:

Corollary 2 For any given number n of d-level systems, be G ⊆ Cln a subgroup of the
Clifford group such that Pn ⊂ G. A G-covariant Wigner function satisfying (OB) exists
only if [ζ] = 0 ∈ H2(Q,E).

Proof of Corollary 2. We first show that G-covariance as defined in Definition 1 implies
the existence of a faithful group action of G on V of the form τ : G × V → V , τg(v) =
Sgv + ag.

AWigner function satisfying (OB) is Clifford covariant if and only if g(Av) = ASgv+ag =
Aτg(v) ∀v ∈ V , ∀g ∈ G, cf. Eq. (32). Therefore

Aτhg(v) = (hg)(Av) = h(g(Av)) = Aτh(τg(v)) ∀v ∈ V, ∀g, h ∈ G. (42)

Since the Av constitute an operator basis, Av = Av′ implies v = v′. Thus, τhg(v) =
τh(τg(v)) ∀v ∈ V , ∀g, h ∈ G, and τ is, indeed, a group action.

If τ were not faithful, there would exist g, h ∈ G with g 6= h such that

g(Av) = h(Av) ∀v ∈ V ⇔ h−1gAv = Avh
−1g ∀v ∈ V. (43)

Using, again, that {Av, v ∈ V } is a basis, we observe that [h−1g, Y ] = 0 for any linear
operator Y and, thus, the unitary h−1g is, up to phase, the identity operator. This
contradicts that g 6= h in G. Hence, τ is a faithful group action.

With Theorem 6, it follows that [ζ] = 0. �

Corollary 2 demonstrates the upper horizontal arrow in the diagram Eq. (41). In sum,
we have established the two vertical arrows and the upper horizontal one, implying the
remaining lower horizontal arrow. This completes the diagram Eq. (41).

The lower horizontal arrow, so far derived through reasoning about the physics concept
of Wigner function, relates the cohomology groups H1(Q,Ucov) and H2(Q,E), which are
purely mathematical objects. In Appendix B we independently establish this relation as a
mathematical fact, without recurring to physics concepts.

4.4.3 Splitting does not imply covariance

Splitting of a Clifford subgroup G does not guarantee the existence of a G-covariant Wigner
function. This is demonstrated with the following 1-qubit example: We consider the
covariance group G generated by the Hadamard gate H and the one-qubit Pauli group.
This group splits, G = 〈H〉 n P1. However, [Φcov] 6= 0. Namely, consider the Pauli
operators Ta1 = X, Ta2 = Y , Ta3 = Z. Then, Φ̃H(a1) = Φ̃H(a3) = 0, and Φ̃H(a2) = 1.
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Thus, Φcov(H, ∂[a1|a3]) = Φ̃H(∂[a1|a3]) = 1 and H∂[a1|a3] = ∂[a1|a3]. These relations
imply that [Φcov] 6= 0 (see the proof of Lemma 1). Thus, with Corollary 1, no G-covariant
Wigner function satisfying (OB) exists.

5 Positive representation of Pauli measurement
In this section we first define “positive representation of Pauli measurement”, and then
establish a necessary and sufficient condition for it, applicable to all Wigner functions that
satisfy (OB), (SW1)–(SW4). Finally, we apply this result to even and odd dimensions,
making use of the respective structure theorems for Pauli observables.

5.1 When are Pauli measurements positively represented?
Denote by Πa,s the projector associated with the outcome s ∈ Zd in the measurement of
the Pauli observable Ta, i. e., Πa,s is the projector onto the eigenspace of Ta with eigenvalue
ωs. The probability to obtain s when measuring Ta on the state ρ is Tr(Πa,sρ). We then
have the following definition of “positive representation of Pauli measurement”:

Definition 2 A pair (W,Θ) of a Wigner function W and an effect function Θ satisfying
(SW4), i. e., Tr(Πa,sρ) =

∑
v∈V ΘΠa,s(v)Wρ(v), represents Pauli measurements positively

if the following two properties hold.

(a) For all Pauli measurements, the corresponding effect functions ΘΠa,s : V −→ R
satisfy

ΘΠa,s(v) ≥ 0, ∀v ∈ V, ∀a, s. (44)

(b) For all Pauli measurements, the non-negativity of the Wigner function is preserved
under measurement, i.e.,

Wρ ≥ 0 =⇒WΠa,sρΠa,s ≥ 0,∀a, s. (45)

The above definition of “positive representation of Pauli measurement” is intuitive. Condi-
tion (a) says that the effects ΘΠa,s associated with all Pauli measurements are non-negative,
and if the Wigner function Wρ is non-negative as well, then the outcome probabilities for
Pauli measurements can be obtained by sampling from the phase space V . Condition
(b) says that if a state ρ is represented by a non-negative Wigner function, then for any
Pauli measurement with any outcome, the post-measurement state is also represented by
a non-negative Wigner function.

5.2 Cohomological condition for positive representation
Here we show the following.

Theorem 7 For any system of n qudits with d levels, n, d ∈ N, a pair of Wigner and effect
function satisfying (OB), (SW1)–(SW4) that represents Pauli measurement positively exists
if and only if [β] = 0 ∈ H2(C,Zd).

The proof of Theorem 7 proceeds in several steps. To begin, we note that (Tb)k ∼ Tbk, and
define phases ϕb : Zd −→ Zd, for all b, such that

(Tb)k = ωϕb(k)Tbk, ∀b, ∀k. (46)

Accepted in Quantum 2023-03-27, click title to verify. Published under CC-BY 4.0. 22



With Ansatz (28), Reality (SW1) becomes equivalent to c∗bTb = c−bT
†
−b, and hence to both

c∗b = ωϕ−b(−1)c−b and c∗b = ωϕb(−1)c−b. (47)

To prepare for subsequent applications, we observe that (Tb)kl =
(
(Tb)k

)l
, for all k, l ∈ Zd

and all b. For the phases ϕb defined in Eq. (46) this entails

ϕb(kl) = ϕkb(l) + lϕb(k).

We will later make use of this relation for the special case of l = −1 mod d,

ϕb(−k) = ϕkb(−1)− ϕb(k). (48)

As the next step towards proving Theorem 7, we have the following two results.

Lemma 2 For all pairs of Wigner and effect functions satisfying (OB), (SW3), (SW4), the
functions ΘΠa,s(·) are, for all a, s, of the form

ΘΠa,s(v) = 1
d

∑
k

ω−ks
′
ca(k) (49)

with s′ := s+ [v, a], ca(k) := ωϕa(k)cka, and

ca(k)∗ = ca(−k). (50)

In particular, all ΘΠa,s(·) are real-valued.

Further,

Lemma 3 For any system of n qudits with d levels, n, d ∈ N, a pair of Wigner and effect
function satisfying (OB), (SW1)–(SW4) can represent measurement positively only if |cb| =
1, ∀b.

Proof of Lemma 2. For any a, the projector Πa,s can be represented as

Πa,s = 1
d

d−1∑
i=0

ω−si(Ta)i.

Starting from the expression for Θ in Eq. (26) and the expansion of Av in Eq. (28),
which invoke the assumptions (OB), (SW3), and (SW4) of the lemma, we obtain by direct
computation

ΘΠa,s(v) = 1
d

d−1∑
k=0

ω−k(s+[v,a])+ϕa(k)cka. (51)

We have thus established all ΘΠa,s as functions from V to C. We still need to show that
all ΘΠa,s(v) are real-valued. To this end, we use the above definitions s′ = s + [v, a] and
ca(k) = ωϕa(k)cka, which simplify ΘΠa,s(v) to Eq. (49).

The ΘΠa,s(v) are thus real-valued if ca(k)∗ = ca(−k), for all a and all k. This property
we now demonstrate.

ca(k)∗ = c∗ka ω
−ϕa(k)

= c−ka ω
ϕka(−1)−ϕa(k)

= ca(−k)ω−ϕa(−k)+ϕka(−1)−ϕa(k)

= ca(−k)
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Therein, the first and fourth line follow by the definition of ca(·), and the second line by
Eq. (47). Finally, using Eq. (48) in the last relation, we obtain Eq. (50). �

Proof of Lemma 3. The proof consists of two parts. Part (a) invokes the condition
Eq. (44) in Def. 2, and leads to Eq. (52). Part (b) invokes the condition Eq. (45) in
Def. 2 of positive representation of Pauli measurement, and leads to Eq. (53) below. Both
constraints together imply the statement of the lemma.

(a). First we exclude the possibility of |ca| > 1 for any a. With the expansion of Av
in Eq. (28), for any v ∈ V , |ca| = |Tr(TaAv)| = |

∑
s ω

sTr(Πa,sAv)| ≤
∑
s |Tr(Πa,sAv)| =∑

s Θa,s(v) = 1. Herein, the third relation follows by the triangle inequality, and |Tr(Πa,sAv)| =
Tr(Πa,sAv) = ΘΠa,s(v) relies on Eq. (26) and the assumption of positive representation;
cf. Eq. (44) in Def. 2. The last equality is by Eq. (27). Thus we arrive at

|ca| ≤ 1, ∀a. (52)

(b). Consider the expectation value 〈Ta〉ρ. With Eqs. (24) and (28),

〈Ta〉ρ =
∑
v∈V

Wρ(v)ω−[v,a]ca.

Now assume that |ca| < 1, and consider quantum states ρ that are positively represented
by W , i.e., Wρ ≥ 0. Then,

|〈Ta〉ρ| ≤
∑
v∈V |Wρ(v)||ca|

<
∑
v∈V |Wρ(v)|

=
∑
v∈V Wρ(v)

= 1.

In short, |〈Ta〉ρ| < 1, for all a ∈ E. Above, the first line holds by the triangle inequality,
the second line invokes the assumption |ca| < 1, the third line invokes the other assumption
Wρ ≥ 0, and the fourth line follows from the Standardization condition (SW2).

In view of this constraint, consider any eigenstate ρ(a, s) of the Pauli observable Ta,
with an eigenvalue ωs. Hence, |〈Ta〉ρ(a,s)| = 1. With the above, |ca| < 1 implies that
Wρ(a,s) < 0, ∀ s ∈ Zd.

With Eqs. (24)-(29), we observe that the completely mixed state I/dn has a positive
Wigner function. However, the post-measurement states resulting from measuring Ta on
I/dn are of the type ρ(a, s). Thus, if |ca| < 1 then W is not positivity preserving under
measurement of the Pauli observable Ta, contradicting the condition Eq. (45) in Def. 2.
Hence, a Wigner function represents Pauli measurement positively only if

|ca| ≥ 1, ∀a. (53)

Combining Eqs. (53) and (52) leaves |ca| = 1 as the only option, for all a. �

As the final step in proving Theorem 7, we need to constrain the phases of the coeffi-
cients ca(k), cf. Lemma 2. This requires a discrete version of Bochner’s theorem.

Lemma 4 (Variation on Bochner’s theorem) For a given function f : Zd −→ C the Fourier
transform f̂ of f is non-negative if and only if the matrix M with coefficients

Mx
y = f(x− y), ∀x, y ∈ Zd, (54)

is positive semidefinite.
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The proof of Lemma 4 is the same as in [36] (Theorem 44 therein). To explicitly demon-
strate that it applies in both odd and even dimensions, we restate it in Appendix A.

We are now ready to prove the main result of this section, Theorem 7.
Proof of Theorem 7. “Only if”: We assume that a given pair of Wigner function W and

effect function Θ satisfying (OB), (SW1)–(SW4) represents Pauli measurement positively.
Our first goal is to show that the coefficients ca(k) may then be expressed in the form

ca(k) = (ωra)k , with ra ∈ Zd, ∀a. (55)

The set {ra, ∀a} characterizes the phase point operators {Av} via ca = ca(1) = ωra .
With Lemma 3, we can express the coefficients ca(k) as ca(k) = eiχa(k), χa(k) ∈ R. We

furthermore observe that, with Eqs. (29a) and (46), it holds that ca(0) = 1, χa(0) = 0, for
all a ∈ E. If d = 2, then Eq. (55) follows directly from Eq. (50); namely the ca(k) are all
real.

For d > 2, we consider the submatrix M(a)|J×J for the set of rows (and columns)
J = {1, 2, k + 1}, which, using Eq. (50), reads

M(a)|J×J =

 1 eiχa(1) eiχa(k)

e−iχa(1) 1 eiχa(k−1)

e−iχa(k) e−iχa(k−1) 1

 .
By Lemmas 2 and 4, we require the determinant of this matrix to be non-negative, which
leads to the constraint

ei(χa(1)+χa(k−1)−χa(k)) + c.c. ≥ 2.

The only solution of that constraint is χa(k) = χa(k − 1) + χa(1), which we may use as a
recursion relation for computing the angles χa(k), for all k. With χa(0) = 0,

χa(k) = k χa(1).

With the relation ca(k)∗ = ca(−k mod d) we further find

dχa(1) = 0 mod 2π, ∀a.

Eq. (55) follows from the last two relations, where ωra = eiχa(1). With Eq. (49) this implies

ΘΠa,s(v) = δra,s+[v,a]. (56)

Now consider the simultaneous measurement of the commuting observables Ta, Tb with
outcomes s(a), s(b) on the completely mixed state. We denote the resulting state by ρ.
A further measurement of Ta or Tb on ρ must produce outcomes s(a), s(b) with certainty,
and a measurement of Ta+b must produce the outcome sa+b = s(a) + s(b) − β(a, b) with
certainty. Since the completely mixed state is positively represented and, by assumption,
Pauli measurements are positivity preserving, it holds thatWρ ≥ 0. Using Standardization
(SW2), we observe that for any phase space point v in the support of Wρ, of which there
is at least one, it must hold that ΘΠa,s(a)(v) = ΘΠb,s(b)(v) = ΘΠa+b,s(a)+s(b)−β(a,b)(v) = 1.
Therefore, with Eq. (56),

s(a) = ra − [v, a],
s(b) = rb − [v, b],

s(a) + s(b)− β(a, b) = ra+b − [v, a+ b].

Adding the first two equations and subtracting the third, we obtain

ra + rb − ra+b = β(a, b); ∀a, b with [a, b] = 0. (57)
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Note that in this condition the dependence on the particular phase space point v has
disappeared. In cohomological notation, Eq. (57) reads β = dr; hence [β] = 0.

“If”: Assume that [β] = 0 holds. We show that then Gross’ Wigner function, see Eq. (9),
has all the desired properties. We can choose a gauge such that β ≡ 0. In this gauge it
holds that ϕa ≡ 0 for all a, cf. Eq. (46). Note that ϕa ≡ 0, in turn, implies (T0)0 = T0
and, thus, µγ(0) = 1. We assert

ca ≡ 1, (58)

and for this choice verify the Stratonovich-Weyl criteria as well as conditions Eq. (44) and
(45) of Def. 2.

(i) Stratonovich-Weyl criteria. (OB), (SW2), and (SW3) hold since we use Ansatz (28)
and fulfill Conditions (29a) and (29b). With ϕa ≡ 0, (SW1) in Ansatz (28) becomes
equivalent to c∗a = c−a, cf. Eq. (47), which is clearly satisfied by ca = 1 in Eq. (58).
Finally, we ensure (SW4) by setting ΘY (v) = Tr(Y Av), cf. Eq. (26).

(ii) Condition Eq. (44). With Eq. (58), we obtain ΘΠa,s = δs,[a,v]. Eq. (44) is thus
satisfied.

(iii) Condition Eq. (45). It suffices to show that Πa,sAvΠa,s =
∑
w∈V qv(w)Aw, with

all qv(w) real and non-negative. We have

Πa,sAvΠa,s = Πa,s

∑
b| [a,b]=0

1
dn
ω[b,v]T †b

=
(

1
d

d−1∑
k=0

ω−ks(Ta)k
) ∑

b| [a,b]=0

1
dn
ω[b,v]T †b


= 1

dn+1

d−1∑
k=0

ω−ks
∑

b|[a,b]=0
ω[b,v]T †b−ka

= 1
dn+1

d−1∑
k=0

ωk([a,v]−s) ∑
b|[a,b]=0

ω[b,v]T †b

=
δs,[a,v]
dn

∑
b

δ[a,b],0 ω
[b,v]T †b

=
δs,[a,v]
dn+1

d−1∑
k=0

∑
b

ω[b,v]+k[b,a]T †b

= δs,[a,v]
1
d

d−1∑
k=0

Av+ka

(59)

Therein, in the first line we have used the ansatz Eq. (58). To remove the non-commuting
elements ([a, b] 6= 0), we have used the following argument: Πa,sTa = TaΠa,s = ωsΠa,s, and
hence Πa,sTbΠa,s = ω−sΠa,sTaTbΠa,s = ω−s+[a,b]Πa,sTbTaΠa,s = ω[a,b]Πa,sTbΠa,s. Thus,
if [a, b] 6= 0 then Πa,sTbΠa,s = 0. On the other hand, if [a, b] = 0 then Πa,sTbΠa,s =
Πa,sΠa,sTb = Πa,sTb. In the third line we have used the phase convention that yields β ≡ 0,
and in the fourth line we re-organized the sum over b. Thus, all non-zero coefficients in
the expansion of Πa,sAvΠa,s are positive. �

5.3 Even vs. odd dimension
For odd local dimension, a Wigner function which represents Pauli measurement positively
has been explicitly constructed [36]. In the framework established here, the existence of
such a Wigner function follows by Observation 1 and Theorem 7.

For even local dimension, we have the following result.
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Ta = Z−1 ⊗ I × Tb = I ⊗ Z × T−1
a+b = Z ⊗ Z−1 = I ⇒ β(a, b) = 0

× × ×

Tc = I ⊗ X̃ × Td = X̃−1 ⊗ I × T−1
c+d = X̃ ⊗ X̃−1 = I ⇒ β(c, d) = 0

× × ×

T−1
a+c = Z ⊗ X̃−1 × T−1

b+d = X̃ ⊗ Z−1 × Ta+b+c+d = Ỹ −1 ⊗ Ỹ = I ⇒ β(a+ c, b+ d) = 0

= = =
I I −I

⇒ ⇒ ⇒

β(a, c) = 0 β(b, d) = 0 β(a+ b, c+ d) = d/2

Table 1: Mermin’s square (shaded cells) generalized to arbitrary even dimension for the proof of
Lemma 5. In each row and column of Mermin’s square, the Pauli observables commute and imply
a value of β as stated. For the definition of X̃ and Ỹ see text.

Figure 1: Topological reformulation of Mermin’s square: each row and column of Mermin’s square
corresponds to the boundary of an elementary face fj with j ∈ {1, . . . , 6} as indicated. The exterior
edges are identified as shown. The arrows give an orientation to the edges. For the explicit expressions
for the Pauli observables appearing in this figure, see Table 1.

Theorem 8 For any system of n ≥ 2 qudits with an even number d of levels, a pair of
Wigner and effect function satisfying (OB), (SW1)–(SW4) that represents all Pauli mea-
surements positively does not exist.

To prove Theorem 8, we first establish the following fact.

Lemma 5 If the dimension d is even, then for any number n ≥ 2 of local systems it holds
that [β] 6= 0.

The proof of Lemma 5 uses the existence of a Mermin square for all even d and n ≥
2, yielding an alternate route to proving the non-existence of non-contextual ontological
representations [46, 71].

Proof of Lemma 5. The proof proceeds by a construction generalizing Mermin’s square
to arbitrary even dimension. For any even d, define

X̃ = Xd/2, Ỹ =
√
ω
d/2

Xd/2Z.
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Now consider the generalized Mermin square shown in Tab. 1 and its equivalent topological
reformulation depicted in Fig. 1. The overall strategy of the proof is to identify a 2-cycle
F in the chain complex corresponding to Fig. 1 such that ∂F = 0 but β(F ) 6= 0. Any such
surface F implies that [β] 6= 0. Namely, assume [β] = 0, i.e., β = dγ for some γ ∈ C1.
Then, for the above surface F , β(F ) = dγ(F ) = γ(∂F ) = γ(0) = 0, which contradicts the
assumption β(F ) 6= 0.

The overall surface F ∈ C2 of the torus in Fig. 1 has the required properties. More
precisely, orienting F such that all boundaries point counterclockwise and labeling the
elementary faces fj as in Fig. 1, we observe that F =

∑6
j=1 fj with f1 = [c|d], f2 = [a +

b|c+d], f3 = [a|b], f4 = −[b|d], f5 = −[a+c|b+d], and f6 = −[a|c], and ∂F = 0. It remains
to be shown that β(F ) 6= 0. First, the top row of the square in Tab. 1 reads TaTbT−1

a+b = I;
or equivalently, in the form matching Eq. (4), TaTb = ω0 Ta+b, such that β(f3) = 0. Now
we turn to the rightmost column of Tab. 1, which is T−1

a+bT
−1
c+dTa+b+c+d = −I. Again we

transform this into the normal form of Eq. (4), which yields ωd/2Ta+b+c+d = Ta+bTc+d and
β(f2) = d/2. In the same fashion, we find β(f1) = β(f4) = β(f5) = β(f6) = 0. Indeed,
∂F = 0 and β(F ) mod d = d/2. Hence [β] 6= 0. �

Proof of Theorem 8. The statement is the combined conclusion of Lemma 5 and The-
orem 7. �

6 Discussion
Here we have addressed the following question about quantum computation with magic
states (QCM). For qudits in odd dimension, negativity in the Wigner function of the
initial magic state is a precondition for quantum speedup [15].—Does the same hold in
even dimension, e.g. for qubits?

This question has many facets. For example, it is known that if the notion of Wigner
function is suitably generalized, namely to non-unique quasiprobability representations,
then negativity in those representations can again be established as a precondition for
quantum speedup [44, 42].

In this paper, we have approached the question from a different angle. Namely, we have
investigated the more conventional Wigner functions derived from operator bases, a class
to which the original Wigner function [33] and Gross’ Wigner function in odd dimension
[36] belong. In the case of odd dimension relying on Gross’ Wigner function (and likewise
in [44, 42]), the key to establishing negativity as a precondition for quantum speedup
are two structural properties of the quasiprobability representations involved—Clifford
covariance and positive representation of Pauli measurement. Here we have shown that, in
even dimension, no Wigner function constructed from operator bases has these important
structural properties. The obstructions to the existence of such Wigner functions are
cohomological.

Specifically, the results of this paper are two-fold: First, for Wigner functions con-
structed from operator bases (and, in some cases, satisfying the Stratonovich-Weyl criteria
in addition), we have formalized the obstructions to Clifford covariance and positive rep-
resentation of Pauli measurement. These obstructions are cohomological in nature. Our
most general result is Theorem 4, on obstructions to Clifford covariance. The only assump-
tion made by the theorem is (OB), i.e., that the Wigner function in question is constructed
from an operator basis.

Theorem 7 on the positive representation of Pauli measurement is the critical one from
the perspective of QCM. Again, a cohomological obstruction is identified, but this time
the theorem requires the Stratonovich-Weyl criteria as additional assumptions.
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Contextuality MBQC

Wigner negativity QCM
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h

f

Figure 2: Canvas of cohomological properties in quantum computation with magic states (QCM) and
measurement-based quantum computation (MBQC), relating to contextuality and Wigner function neg-
ativity. a=[4], b=[5]: cohomological formulation of contextuality; c=[72], d=[21]: MBQC is contextual;
e=[22]: contextuality in temporally flat MBQCs is cohomological; f=[13]: Wigner function negativity
and state-dependent contextuality w.r.t. Pauli observables are the same in odd dimension; contextuality
of the magic states is a precondition for quantum speedup; g=[41]: computational power only resides
in states and measurements, for both QCM and MBQC. h=[15]: in odd local dimension, quantum
speedup in QCM requires Wigner function negativity. This result relies on the Clifford covariance of
Gross’ Wigner function, and its positive representation of Pauli measurement. [This work]: In even
local dimension, cohomological invariants obstruct the existence of Wigner functions that are Clifford
covariant and represent Pauli measurement positively.

As the second set of our results, we have applied the above theorems to the case of
even local dimension, where the cohomological obstructions don’t vanish. Thereby we
have extended the existing no-go results [43, 46, 41] on the positive representation of
the stabilizer sub-theory of quantum mechanics in even dimensions. The most general
result so far is [46], which shows that, under the assumption of diagram preservation, the
stabilizer sub-theory cannot be positively represented. From this result, we have removed
the assumption of diagram preservation. Specifically, in Theorem 5 we have shown that, in
all even dimensions, Clifford-covariant Wigner functions from operator bases do not exist.
In Theorem 8 we have shown that—whenever n ≥ 2—Wigner functions from operator
bases that also satisfy the Stratonovich-Weyl criteria cannot represent Pauli measurement
positively.

Taking a step back, we observed in the introduction that there is a web of cohomological
facts connecting measurement-based quantum computation to contextuality4, and beyond.
This web of cohomological facts we have extended to a further computational scheme,
quantum computation with magic states. Fig. 2 shows a map of these cohomological facts
and their relations.
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A Proof of Lemma 4
Lemma 4 is a restatement of Theorem 44 in [36]. The entire chapter in [36] to which
Theorem 44 belongs is written under the assumption that d is odd. We restate the proof
here, to clarify that for this particular lemma the assumption of odd d is not needed.

Proof of Lemma 4. Denote by νk, k ∈ Zd, a character of Zd, νk(x) = ωkx, for all x ∈ Zd;
and by the same symbol the vector νk = (1, ωk, ω2k, .., ω(d−1)k)T . For any d× d matrix M
defined in Eq. (54) it holds that

[Mνk]y =
∑
x f(x− y)ωkx

=
∑
x f(x)ωkxωky

= d f̂(k)ωky,

and hence νk is an eigenvector of M with eigenvalue d f̂(k). Since there are d characters
νk, the matrix M is diagonal in their basis. All its eigenvalues are non-negative if and only
if f̂ is non-negative. �

B Relation between the 1st and 2nd cohomology group of Q

Here we provide an alternative derivation of the mathematical fact represented by the
lower horizontal arrow in the diagram of Eq. (41), namely [Φcov] = 0 =⇒ [ζ] = 0, by
purely mathematical reasoning that bypasses the discussion of Wigner functions. The
result we obtain goes slightly beyond the one presented in the main text in that it applies
to any symmetry group G ⊆ Cln, regardless of whether Pn ⊂ G. The idea is similar to the
use of long exact sequences in cohomology that appears in Section 5.6 of [5].

We consider the exact sequence of Zd-modules

0→ E → C1 → Ucov → 0, (60)
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where the second map is defined by sending a ∈ E to the 1-cochain [a,−] : E → Zd. There
is an associated long exact sequence in cohomology

· · ·H1(Q,E)→ H1(Q,C1)→ H1(Q,Ucov) σ−→ H2(Q,E)→ · · ·

which sends [Φcov] ∈ H1(Q,Ucov) to the cohomology class σ([Φcov]) = [ζ], where

ζ = dh(Φ̃ ◦ θ) ∈ C2(Q,C1), (61)

see Section 2.4.3. To see that the cocycle ζ belongs, in the sense of the exact sequence in
Eq. (60), to C2(Q,E) observe that dvζ = 0 since dhΦcov = 0. The symmetry group G,
which is the extension of Q by N ⊂ E, is a subgroup of G̃ obtained by extending Q by E
using the cocycle ζ. This is a consequence of the way ζ is defined. If [Φcov] = 0 then the
extension class [ζ] = σ([Φcov]) of G̃ vanishes. In this case G̃ splits, which also implies that
the subgroup G splits.
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