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A comment regarding notation: Equation and Theo-
rem references to the main text carry a suffix “[m]” below,
to distinguish them from the equation numbering in this
supplement. For example, Eq. (8) from the main text is
here referred to as Eq. (8) [m].

I. STRATONOVICH-WEYL
CORRESPONDENCE

In the field of quantum optics, the Stratonovich-Weyl
(SW) correspondence is a set of criteria that well-behaved
quasi-probability distributions over phase space have to

satisfy. Denote by F
(s)
A : X −→ C the quasiprobability

distribution corresponding to the (not necessarily Hermi-
tian) operator A, with X the phase space and s a real
parameter in the interval [−1, 1]. In the standard formal-
ism for infinite-dimensional Hilbert spaces, s = −1, 0, 1
correspond to the Glauber-Sudarshan P , Wigner, and
Husimi Q function, respectively. Then, the following set

of criteria is imposed on the F
(s)
A [1]; also see [2],

(0) Linearity: A −→ F
(s)
A is a one-to-one linear map.

(1) Reality:

F
(s)

A† (u) =
(
F

(s)
A (u)

)∗
,∀u ∈ X.

(2) Standardization:∫
X

dµ(u)F
(s)
A (u) = TrA.

(3) Covariance:

F
(s)
g·A(u) = F

(s)
A (g−1u), g ∈ G,

with G the dynamical symmetry group.

(4) Traciality:∫
X

dµ(u)F
(s)
A (u)F

(−s)
B (u) = TrAB.

To investigate the SW criteria in the present setting, we
first extend the probability distributions pρ defined in

Eq. (2) [m] for proper density matrices to a quasiproba-
bility function W defined for all operators A, via

A =
∑
α

WA(α)Aα. (1)

We note that W does not come with a parameter s; there
is only a single quasiprobability function W . This will
affect the formulation of traciality.

Further, the mapping A −→ WA is linear, A + B can
be represented as WA + WB . However, the mapping is
one-to-many, and the Stratonovich-Weyl criterion (0) is
thus not satisfied. In fact, this is a general consequence of
Kochen-Specker contextuality, as has been demonstrated
in [3].

The remaining SW conditions apply.
(1) Reality. All phase point operators Aα are Her-

mitian by definition, cf. Eq. (1) [m]. Therefore A†

can be represented by the quasiprobability distribution
α 7→WA(α)∗.

(2) Standardization. By their definition Eq. (1) [m],
the phase point operators satisfy TrAα = 1, for all α ∈
Vn. Standardization,

TrA =
∑
α

WA(α), (2)

follows by taking the trace of Eq. (1).
(3) Covariance. Let Cln denote the n-qubit Clifford

group. We have the following result.

Lemma 1 For any operator A it holds that

WgAg†(α) = WA(g−1α), ∀g ∈ Cln. (3)

Proof of Lemma 1. First we show that Λn is mapped into
itself under the action of the Clifford group. Namely, for
all stabilizer sates |σ〉 ∈ S,

Tr(gAαg
†|σ〉〈σ|) = Tr(Aα g

†|σ〉〈σ|g)
= Tr(Aα |σ′〉〈σ′|)
≥ 0.

Furthermore, Tr(gAαg
†) = TrAα = 1. Hence, with the

definition Eq. (1) [m] of Λn, it holds that gAαg
† ∈ Λn,

for all α ∈ Vn and all g ∈ Cln.
Now we show that for every α ∈ Vn and every g ∈ Cln

there is a unique β ∈ Vn such that

gAαg
† = Aβ . (4)
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Let Sα be the subset of stabilizer states that specifies
Aα, i.e. Aα is the unique solution in Λn to the set of
constraints Tr(X|σ〉〈σ|) = 0 for all |σ〉 ∈ Sα. In fact,
we can choose the size of Sα to be equal to 22n − 1 [4,
Theorem 18.1]. Let g · Sα denote the set of stabilizers
g|σ〉〈σ|g† where |σ〉 ∈ Sα. Then the action of g gives a
one-to-one correspondence between the set of solutions
to the constraints specified by Sα and g† · Sα since if X
is a solution to the former then gXg† is a solution to
the latter and vice versa. Moreover, gXg† belongs to
the polytope Λn. Therefore gAαg

† specifies a vertex. In
other words, given α ∈ Vn and g ∈ Cln, Eq. (4) holds for
a suitable β ∈ Vn. We thus define gα := β, and Eq. (4)
becomes

gAαg
† = Agα. (5)

Therefore,∑
αWgAg†(α)Aα = gAg†

=
∑
αWA(α) gAαg

†

=
∑
αWA(α)Agα

=
∑
αWA(g−1α)Aα.

Thus, WgAg†(α) = WA(g−1α)Aα. �
We remark that, for qubits, only non-unique quasi-

probability functions can be Clifford covariant. Namely,
if the phase point operators form an operator basis, i.e.,
are linearly independent, then the resulting quasiproba-
bility function cannot be Clifford covariant [5].

The covariance property can be used to efficiently sim-
ulate the effect of Clifford unitaries in QCM, as an alter-
native to the method of treating Clifford unitaries dis-
cussed in the main text.

(4) Traciality. In the absence of a continuously varying
parameter s, we introduce a dual quasiprobability func-
tion W̃ in addition to W , to stand in for F (−s). Namely,
for all projectors Πa,s, corresponding to measurements of
Pauli observables Ta with outcome s, we define

W̃Πa,s(α) := Qa(s|α).

By linearity, this implies expressions for all W̃Ta(α).
Since the Pauli operators form an operator basis, again
by linearity one obtains W̃A for any operator A. Then,

TrAB =
∑
α

W̃A(α)WB(α)

follows from Eq. (4) [m].

We thus satisfy the SW criteria (1) - (4).

To conclude, we emphasize that for the present purpose
of classically simulating QCM, a crucial property of W is
positivity preservation under Pauli measurement. This
property has no counterpart in the Stratonovich-Weyl
correspondence.

II. SOME BACKGROUND ON QCM

Quantum computation with magic states (QCM) is a
scheme for universal quantum computation, closely re-
lated to the circuit model. From a practical point of
view, QCM is very advantageous for fault-tolerant quan-
tum computation [13], but that does not concern us here.

A. Operations in QCM

There are two types of operations in QCM, the “free”
operations and the resources. They free operations are
(i) Preparation of all stabilizer states, (ii) All Clifford
unitaries, and (iii) Measurement of all Pauli observables.

The resource are arbitrarily many copies of the state

|T 〉 =
|0〉+ eiπ/4|1〉√

2
. (6)

The state |T 〉 is called a “magic state”.
A stabilizer state is a pure n-qubit quantum state

which is the joint eigenstate of a maximal set of commut-
ing Pauli operators [14–16]. The n-qubit Clifford group
Cln is the largest subgroup of SU(2n) with the property
that for any g ∈ Cln and all Pauli operators Ta there
exists a Pauli operator Tb such that

gTag
† = ±Tb.

That is, the Clifford group is the normalizer of the Pauli
group.

The distinction between free operations and resources
in QCM is motivated by the Gottesman-Knill theorem.
Namely, the free operations alone are not universal for
quantum computation, and, in fact, can be efficiently
classically simulated. The magic states restore computa-
tional universality (see below), hence the name.

A further motivation for subdividing the computa-
tional primitives into free operations and resources stems
from quantum error correction. Fault-tolerant versions
of the free operations are comparatively easy to produce,
but the creation of fault-tolerant magic states is very op-
erationally costly.

B. Computational universality

It is well known [17] that the gates

{CNOTij , Hi, Ti, 1 ≤ i 6= j ≤ n}

form a universal set, i.e., enable universal quantum com-
putation. Therein, the controlled NOT gates CNOTij
between qubits i and j and the Hadamard gates Hi are
in the Clifford group. The only non-Clifford element in
the above universal set is

Ti = exp
(
−iπ

8
Zi

)
.
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This gate can be simulated by the use of a single magic
state |T 〉 in a circuit of Clifford gates and Pauli measure-
ments (circuit reproduced from Fig. 10.25 of [16]),

SXT
ψ

ψT
.

Therein, the lower qubit is measured in the Z-basis, and
the binary measurement outcome classically controls the
SX-gate. S is a Clifford gate,

Si = exp
(
−iπ

4
Zi

)
.

Thus, the magic states Eq. (6) boost the free operations
to quantum computational universality.

III. COMPLEXITY PARAMETER OF THE
STATE POLYTOPE Λn

A question that arises with Theorem 2 [m] is what
determines the value of n labelling the state polytope
Λn, and hence the complexity of the simulation. In this
regard, we make the following observation.

Lemma 2 Any quantum computation in the magic state
model that operates on an initial state |µ〉A⊗|σ〉B, where
|µ〉 is an n-qubit magic state and |σ〉 is an m-qubit sta-
bilizer state, can with the same efficiency be run on the
magic state |µ〉 alone.

Supplementing the non-stabilizer magic state |µ〉 with
stabilizer states is thus redundant. For example, if the
magic states used in a given QCM are all of T -type, then
n can be taken to be the number of those states.

Proof of Lemma 2. Wlog. we discuss the version of
QCM where the quantum computation consists of a se-
quence of only Pauli measurements. We give an explicit
procedure to replace the sequence τ on A⊗B by an equiv-
alent sequence τ̃ (A) of measured observables that act only
on the subsystem A. The proof is by induction, and the
induction hypothesis is that, at time t, the sequence τ≤t
of measurements has been replaced by a computationally

equivalent sequence τ̃
(A)
≤t of Pauli measurements on the

register A only. This statement is true for t = 0, i.e., the
empty measurement sequence. We now show that the
above statement for time t implies the analogous state-
ment for time t+ 1.

At time t, the state of the quantum register evolved
under the computationally equivalent measurement se-

quence τ̃
(A)
≤t is |Ψ(t)〉 = |ψ(t)〉A⊗ |σ〉B . We now consider

the Pauli observable T (t + 1) ∈ τ to be measured next,
and write T (t + 1) = SA(t + 1) ⊗ RB(t + 1). There are
two cases.

Case I: T (t+1) commutes with the entire stabilizer S of
|σ〉. Hence, also RB(t+ 1) commutes with S. But then,

either RB(t + 1) or −RB(t + 1) is in S, and RB(t + 1)
may be replaced by its eigenvalue±1 in the measurement.
Hence, the measurement of T (t+ 1) is equivalent to the
measurement of ±SA(t+ 1).

Case II: T (t + 1) does not commute with the entire
stabilizer S of |σ〉. Then, the measurement outcome st+1

is completely random. Further, there exists a Clifford
unitary U such that

USU† = 〈XB:1, XB:2, .., XB:m〉,
UT (t+ 1)U† = ZB:1.

Therefore, the state resulting from the measurement of
T (t+1), with outcome st+1 on the state |Ψ(t)〉 is the same
state as the one resulting from the following procedure:

1. Apply the Clifford unitary U to |Ψ(t)〉 = |ψ(t)〉A⊗
|σ(t)〉B , leading to

U |Ψ(t)〉 = |ψ̃(t)〉 ⊗ |+〉B ,

where |+〉B :=
⊗

i∈B |+〉B:i.

2. Measure ZB:1 on |ψ̃(t)〉⊗ |+〉B , with outcome st+1.

3. Apply U†.

Now, note that the measurement in Step 2, of the Pauli
observable ZB:1 is applied to the stabilizer state |+〉B .
The result is |σ̃(t + 1)〉 = |st+1〉B:1

⊗m
j=2 |+〉B:j . There-

fore, after normalization, the effect of the measurement
can be replaced by the unitary (XB:1)

st+1 HB:1.
Thus, the whole procedure may be replaced by the

Clifford unitary U† (XB:1)
st+1 HB:1 U . But Clifford uni-

taries don’t need to be implemented. They are just
propagated past the last measurement, thereby affecting
the measured observables by conjugation whereby their
Pauli-ness is preserved. In result, in Case II, the measure-
ment of T (t+ 1) doesn’t need to be performed at all. It
is replaced by classical post-processing of the subsequent
measurement sequence.

We conclude that in both the cases I and II, given
the induction assumption, the original measurement se-
quence τ≤t+1 can be replaced by a computationally

equivalent measurement sequence τ̃
(A)
≤t+1 acting on reg-

ister A only. By induction, the complete measurement
sequence τ can be replaced by a computationally equiv-
alent sequence τ̃ (A) acting on A only.

Since the measurements τ̃ (A) are applied to an unen-
tangled initial state |µ〉A ⊗ |σ〉B , the register B can be
dropped. Finally, the measurement sequence τ̃ (A) is of
the same length or shorter than τ , and can be efficiently
computed from the latter. Hence its implementation is
at least as efficient. �

IV. MULTI-QUBIT PHASE POINTS FROM [10]
ARE EXTREMAL

The present work, there is no negativity anywhere in
the classical simulation of QCM. The shifting of the cause



4

for computational hardness away from negativity to other
potential sources is a major disruption with the prior
works [6–10].

But underneath this discontinuity lies an element of
continuity. Namely, the direct precursor to the present
work is Ref. [10]; and the phase point operators of the
multi-qubit quasiproability function defined therein are
also extremal vertices of the present state polytope Λn.
This is the content of Lemma 4 below, the main re-
sult of this section. It shows that the multi-qubit phase
space defined in [10] is a subset of the phase space of
the present model, describing a sector of it in which the
update rules under Clifford unitaries and Pauli measure-
ments are guaranteed to be computationally efficient.

Recall from [10] a couple of definitions. We call a set
Ω ⊂ En closed under inference if for all a, b ∈ Ω with
the property that [a, b] = 0 it holds that a + b ∈ Ω.
(Here [a, b] := aXbZ + aZbX mod 2.) We call a set Ω ⊂
En non-contextual if it supports a non-contextual value
assignment. Sets Ω which are both closed under inference
and non-contextual are called “cnc” [10] (also see [12]).
Of particular interest in are maximal cnc sets, which are
cnc sets that are not strictly contained in any other cnc
set. They give rise to the following multi-qubit phase
point operators

AγΩ =
1

2n

∑
a∈Ω

(−1)γ(a)Ta, (7)

where Ω is a maximal cnc set, and γ : Ω −→ Z2 is a
non-contextual value assignment.

Theorem 1 in [10] classifies the maximal cnc sets. For
the present purpose it may be rephrased as

Lemma 3 If a subset of En is closed under inference
and does not contain a Mermin square then it is non-
contextual.

Proof sketch for Lemma 3. Theorem 1 of [10] classifies
the subsets of En that are closed under inference and do
not contain a Mermin square. They all turn out to be
non-contextual. �

We now have the following result (also see [11] for an
independent proof).

Lemma 4 For any number n of qubits, the phase point
operators AγΩ of Eq. (7) are vertices of Λn.

An independent proof of this result is given in [11].
Proof of Lemma 4. Pick an n, any pair (Ω, γ). AγΩ has

unit trace, and, as shown in [10], satisfies Tr(|σ〉〈σ|AγΩ) ≥
0. Therefore, AγΩ ∈ Λn, and AγΩ has an expansion

AγΩ =
∑
β∈Vn

pΩ,γ(β)Aβ , (8)

where pΩ,γ(β) ≥ 0, ∀β, and
∑
β pΩ,γ(β) = 1. Thus, pΩ,β

is a probability distribution. Henceforth, we consider any
Aβ for which pΩ,γ(β) > 0.

(a) (b)

b
b

FIG. 1. Two possibilities for the set Ω ∩M , shown in color.

Now pick an a ∈ Ω and consider Tr (TaA
γ
Ω). With

Eq. (7), it holds that (−1)γ(a) =
∑
β pΩ,γ(β)〈Ta〉β . Since

pΩ,β is a probability distribution and |〈Ta〉β | ≤ 1 for all
β, it follows that

〈Ta〉β = (−1)γ(a), ∀β with pΩ,γ(β) > 0.

That is, every phase point operator that appears on the
rhs. of Eq. (8) with non-zero coefficient agrees with AγΩ
on the expectation values 〈Ta〉 for all a ∈ Ω.

Now we turn to the expectation values for b 6∈ Ω. Any
set Ω̃ ⊂ En that is closed under inference and contains
both Ω and b is contextual, by the maximality of Ω. By
Lemma 3, any such Ω̃ contains a Mermin square M , and
furthermore b ∈M .

Since M is closed under inference, so is Ω ∩M . Also,
since Ω is maximal, Ω∩M is maximal in M . Up to per-
mutations of rows and columns, there are two possibilities
for Ω ∩M , which are displayed in Fig. 1.

Case (a). For any b there exists a triple {x, y, z} ⊂
M\b such that [x, y] = [x, z] = [b, y] = [b, z] = 0, [x, b] =
[y, z] 6= 0. We have the following Mermin square:

x+y+z+b

x y

z

x+y

x+z

b

y+b

z+b

Therein, Mermin’s contradiction to the existence of a
non-contextual HVM is encapsulated in the operator re-
lation (TxTy)(TzTb) = −(TxTz)(TyTb).

We chose the following phase conventions.

Tx+y = TxTy, Tz+b = TzTb,
Tx+z = TxTz, Ty+b = TyTb,

(9)

and

Tx+y+z+b = Tx+zTy+b,
Tx+y+z+b = −Tx+yTz+b.

(10)

Recall that with the first part of the proof 〈Tj〉β =

(−1)γ(j), for j = x, y, z. Now assume that 〈Tb〉β = ν,
with −1 ≤ ν ≤ 1. Now, with Eq. (9)

〈Tx+y〉β = (−1)γ(x)+γ(y), 〈Tx+z〉β = (−1)γ(x)+γ(z),
〈Ty+b〉β = ν(−1)γ(y), 〈Tz+b〉β = ν(−1)γ(z).
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Stabilizer mixtures

Physical
states

Λ2

ρ1

ρ2

ρ3

ρ4

x

y

FIG. 2. Cross section of the space Herm1(4) parameterized by
Eq. 11. The two-qubit stabilizer polytope is inscribed in the
set of physical states and the set of physical states is inscribed
in the polytope Λ2. The states labelled by ρ1–ρ4 are given in
Eq. (12).

Therefore, with Eq. (10),

〈Tx+y+z+b〉β = ν(−1)γ(x)+γ(y)+γ(z)

= −ν(−1)γ(x)+γ(y)+γ(z).

This is satisfiable only if ν = 0, and hence 〈Tb〉β = 0.
Case (b). The argument is analogous to case (a), and

we do not repeat it here.
By the above case distinction, for any b ∈ En\Ω either

case (a) or (b) applies, and each way the consequence is
that 〈Tb〉β = 0. Therefore, any phase point operator Aβ
that appears on the rhs of Eq. (8) with nonzero pΩ,γ(β)
agrees with AγΩ on all expectation values of Pauli observ-
ables; hence AγΩ = Aβ for all such β.

Now assume there exists no such Aβ . Taking the trace
of Eq. (8) yields 1 = 0; contradiction. Hence, there must
exist a β such that AγΩ = Aβ , for all (Ω, γ). �

V. THE TWO-QUBIT POLYTOPE Λ2

Fig. 1 in the main text shows what the polytope Λn
looks like for a single qubit, n = 1. The polytope Λ1 is a
cube inscribing the Bloch ball—the set of physical quan-
tum states. The situation is similar for multiple qubits.

In general, Λn is not a hypercube, it is a more general
polytope, but it still inscribes the set of physical states.

Fig. 2 shows a cross section of the space Herm1(4), in-
dicating the states which are contained in the two-qubit
stabilizer polytope—the set of mixtures of pure two-qubit
stabilizer states, the set of physical states, and the poly-
tope Λ2. The cross section is parameterized by

ρ(x, y) =
1

4
I12 + x(Z1 + Z2) + y(X1X2 + Z1Z2 − Y1Y2).

(11)
The four states labelled in the figure are

ρ1 =
1

4
I12 −

1

8
(Z1 + Z2),

ρ2 =
1

4
I12 +

1

4
(X1X2 + Z1Z2 − Y1Y2),

ρ3 =
1

4
I12 −

1

12
(X1X2 + Z1Z2 − Y1Y2),

ρ4 =
1

4
I12 +

1

8
(Z1 + Z2).

(12)

VI. Λn IS BOUNDED

The set En has the structure of a vector space over Z2.
The commutator TaTbTaTb is given by (−1)[a,b] where
[a, b] = aTZbX+bTZaX mod 2. A subspace of En on which
the symplectic form [·, ·] vanishes is called an isotropic
subspace. For an isotropic subspace I ⊂ En and a value
assignment λ : I → Z2 we define a projector

ΠI,λ =
1

|I|
∑
a∈I

(−1)λ(a)Ta.

Summing over all value assignments gives a resolution
of the identity:

∑
λ ΠI,λ = 1. For each stabilizer state

|σ〉 there is a unique pair (I, λ) consisting of a maximal
isotropic subspace and a value assignment defined on it
such that ΠI,λ = |σ〉〈σ|. Then for X ∈ Λn we have

Tr(XΠa,s) = Tr(XΠa,s1)
= Tr(XΠa,s

∑
λ′ ΠI′,λ′)

=
∑
λ′ Tr(XΠa,sΠI′,λ′)

=
∑
λ| λ(a)=s Tr(XΠI,λ) ≥ 0.

Therefore Λn is contained in the hypercube defined by

{X ∈ Herm1(2n)| Tr(Πa,sX) ≥ 0, ∀a ∈ En−{0}, s = 0, 1}

and thus it is bounded.
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