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We investigate the Λ-polytopes, a convex-linear structure recently defined and applied to
the classical simulation of quantum computation with magic states by sampling. There

is one such polytope, Λn, for every number n of qubits. We establish two properties

of the family {Λn, n ∈ N}, namely (i) Any extremal point (vertex) Aα ∈ Λm can be
used to construct vertices in Λn, for all n > m. (ii) For vertices obtained through this

mapping, the classical simulation of quantum computation with magic states can be

efficiently reduced to the classical simulation based on the preimage Aα. In addition, we
describe a new class of vertices in Λ2 which is outside the known classification. While

the hardness of classical simulation remains an open problem for most extremal points

of Λn, the above results extend efficient classical simulation of quantum computations
beyond the presently known range.
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1 Introduction

The question of precisely which property of quantum mechanics is responsible for the speedup

in quantum computation to date remains open. Various candidates have been put for-

ward, such as superposition and interference [1], entanglement [2,3], and largeness of Hilbert

space [4], but there is always a counterexample that stops broad generalization; see e.g. [5–8].

To identify new candidates, or perhaps even refine the question, one may study classical simu-

lation algorithms for quantum systems, and specifically how the efficiency of such algorithms

breaks down when pushed towards the regime of universal quantum computation.

The classical simulation method of present interest is based on sampling from the Λ-

polytope [9]. Before turning to it, to provide context, we briefly discuss other classical simu-

lation methods for quantum computation, and the general structure that unifies them.
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Classical simulation techniques for quantum computation typically seek to exploit proxim-

ity to a simple, “effectively classical” reference point. The characteristic simplifying feature of

such reference points varies; examples are locality [10], stabilizerness [5], matchgates [11,12],

and the positivity of Wigner functions [13, 14]. Furthermore, often a natural measure exists

for the distance between the setting of interest and the classical reference point. This can be,

in case of locality as the simplifying feature, the bond dimension in MPS states [2], or the

graph-theoretic measure of rankwidth in classical simulation of measurement based quantum

computation on graph states [3]. If stabilizer-ness is the simplifying feature, measures of state

magic [13–20] such as Wigner function negativity or stabilizer rank quantify the hardness of

classical simulation.

Irrespective of the concrete approach, these classical simulation methods share four general

features: (i) A sector in which the classical simulation is efficient, (ii) a physical property that

characterizes this sector, (iii) a physical property of universal quantum computation that

obstructs efficiency of the simulation method in the general case, and (iv) a distance measure

from the setting of interest to its closest efficiently simulable setting, governing the hardness

of classical simulation.

In this paper, we are concerned with the recently introduced method of simulating quan-

tum computation based on sampling from the Λ-polytope [9]. Being a sampling algorithm, it

is closely related to the sampling algorithms invoking Wigner functions and other quasiprob-

ability distributions [13, 15, 21–24]. However, there is also an important difference: in the

present method, no negativity ever occurs!

This prompts the question of where quantumness is hiding in this scenario. If quantumness

cannot be attributed to negativity, then to what else? To summarize the state of knowledge

about the classical simulation by sampling from the Λ-polytope [9], of the above general

characteristics (i) - (iv), we presently only have a glimpse of (i). Namely, it is known that

in the subpolytope spanned by the so-called cnc vertices, classical simulation is efficient [24];

and this includes the domain of the stabilizer formalism [5] as a strict subset. But it is

presently unknown how far the efficiently simulable region extends, which physical property

this efficiency is to be attributed to, and which opposing physical property would render the

simulation of the general case inefficient.

This paper is a first approach to the systematic study of the Λ-polytopes. We investigate

the structure of the extremal points of the polytopes Λn for any number n of qubits, asking:

Can the vertices of Λn be constructed from smaller parts? And if so, can the classical sim-

ulation of quantum computation based on such vertices be reduced to the classical simulation

of those parts? —Here, we give affirmative first answers to these questions, extending the

classically efficiently simulable sector of the model [9].

The main results of this paper are:

• Theorem 2 (Section 3): For every vertex X ∈ Λm, every projector onto an (n − m)-

qubit stabilizer state |σ〉, Πσ = |σ〉〈σ|, and every n-qubit Clifford unitary U , it holds

that U(X ⊗Πσ)U† is a vertex of Λn.

• Theorem 3 (Section 4): The classical simulation of quantum computation with magic

states (QCM), with the n-qubit initial state X̃ = U(X ⊗ Πσ)U†, can be efficiently

reduced to the classical simulation of QCM with the m-qubit initial state X.
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• Theorem 4 (Section 5): We describe a new family of vertices X ∈ Λ2, i.e., of two qubits,

which is outside the closed and noncontextual (cnc) classification [24]. It is the first

explicitly known family, including the update under Pauli measurements, beyond cnc.

The significance of the first result is that whenever we learn about a new vertex of Λm, it

implies an infinite family of vertices on n > m qubits. The second result means that, for the

entire infinite family of vertices resulting from X, the hardness of classical simulation of QCM

is essentially given by the hardness of simulating QCM on X. This result, together with the

new class of efficiently updateable vertices provided by the third result, extends the efficiently

classically simulable sector for the present method.

This paper is organized as follows. In Section 2 we review background material. We

state the definition of the state polytopes Λn and provide a motivation for studying them.

In Section 3 we show how to construct vertices of the state polytope Λn from vertices of the

polytope Λm, for n > m. Section 4 is concerned with the efficiency of classical simulation of

quantum computation with magic states. For the cases where a vertex under consideration is

the result of the map defined by Theorem 2, we describe a reduction to the classical simulation

of the preimage of the map. In Section 5, we describe a new family of two-qubit vertices that

is outside the presently known cnc classification. We conclude in Section 6.

2 Background

This section begins with a short summary of quantum computation with magic states (Sec-

tion 2.1), which provides our main motivation for studying the Λ-polytopes. We then state

the definition of the state polytopes Λn and summarize the properties presently known of

them (Section 2.2). We conclude with a discussion of the role of the tensor product for the

present construction (Section 2.3).

2.1 Quantum computation with magic states

The Λ-polytopes have found a surprising application in describing universal quantum compu-

tation with magic states in terms of sampling [9]. Therefore, before we discuss the Λ-polytopes

themselves we provide a brief summary of that scheme of quantum computation.

Quantum computation with magic states (QCM) [26–28] is a scheme for universal quantum

computation, closely related to the circuit model. There is also an important difference. The

unitary gates in QCM are not universal. This is compensated by the provision of so-called

magic states which restore computational universality. In this way, computational power

shifts from the gates to the initial states. As an aside, from a practical point of view QCM is

very advantageous for fault-tolerant quantum computation [28].

There are two types of operations in QCM, the “free” operations and the “resources”.

The free operations are (i) preparation of all stabilizer states, (ii) the Clifford unitaries, and

(iii) measurement of all Pauli observables.

The resource are arbitrarily many copies of the state

|T 〉 =
|0〉+ eiπ/4|1〉√

2
. (1)

The state |T 〉 is called a “magic state”, as it restores computational universality given the

other above operations.
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The distinction between free operations and resources in QCM is motivated by the Gottesman-

Knill theorem which says that free operations alone can be efficiently classically simulated.

2.2 The Λ-polytopes

2.2.1 Definition

Let Herm(2n) denote the set of Hermitian operators on the n-qubit Hilbert space H = C2n

.

We recall the definition of the polytope Λn from [9,29]:

Λn = {X ∈ Herm1(2n)| Tr(X|σ〉〈σ|) ≥ 0, ∀|σ〉 ∈ Sn} (2)

where Herm1(2n) ⊂ Herm(2n) denotes the subset of Hermitian matrices of trace 1 and Sn
denotes the set of pure n-qubit stabilizer states. The set of vertices of Λn is denoted by

{Aα| α ∈ Vn}. We note that in [29] the polytope Λn is used as a convenient tool to study the

facets of the stabilizer polytope.

The state spaces Λn are thus generalizations of the sets of proper density matrices. Namely,

for density matrices we require that with respect to any quantum state, the Born rule yields

a probability for finding that state in measurement, i.e., a nonnegative real number. For the

elements of Λn, we relax this condition. Namely, we only require it for stabilizer states.

In what follows, we will often expand vertex operators in the basis of n-qubit Pauli oper-

ators. Writing En for the vector space (Z2)n × (Z2)n, the Pauli operators are

Tv = ivZ ·vXZ(vZ)X(vX), ∀(vZ , vX) = v ∈ En,

where vZ · vX is computed mod 2, and X(vX) :=
⊗n

i=1(Xi)
[vX ]i , Z(vZ) :=

⊗n
i=1(Zi)

[vZ ]i .

Sometimes we will write T
(n)
v to emphasize that the operator is an n-qubit Pauli operator.

En comes with a symplectic form defined by

[v, w] = vTZwX + vTXwZ

for all v = (vZ , vX), w = (wZ , wX) ∈ En. We denote the canonical symplectic basis of En
by {x1, · · · , xn, z1, · · · , zn}. Also it is convenient to introduce the notation yn = xn + zn.

We write Sp2n(Z2) for the group of symplectic transformations acting on En. For a subspace

W ⊂ En let W⊥ denote the subspace {v ∈ En| [v, w] = 0, ∀w ∈ W}. A subspace J ⊂ En is

called isotropic if J ⊂ J⊥. The collection of maximal isotropic subspaces of En is denoted by

I(En).

2.2.2 Properties of Λn

Beyond the defining relations and the application to QCM [9], to date two general structural

facts are known about the family {Λn, n ∈ N} of state spaces. They are

1. For all n, Λn is a polytope, hence it is bounded and the set of its extremal points is

finite.

2. For all n, Λn contains all n-qubit density matrices, and it maps into itself under conju-

gation by Clifford unitaries and Pauli measurements.
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Absence of negativity. As a consequence of the above point 2, negativity of quasiprob-

ability distributions can be entirely dispensed with in the description of QCM. There exists

a representation [9] for which all quantum states, as well as all quantum operations neces-

sary for QCM, can be represented by probabilities and conditional probabilities, respectively,

giving rise to a hidden variable model (HVM) describing universal quantum computation by

sampling.

Namely, we have the following result invoking the state polytopes Λn of Eq. (2).

Theorem 1 ( [9]) For all numbers of qubits n ∈ N,

(i) Each n-qubit quantum state ρ can be represented by a probability function pρ : Vn → R≥0,

ρ =
∑
α∈Vn pρ(α)Aα.

(ii) For the state update under Pauli measurements it holds that

Πa,sAαΠa,s =
∑
β∈Vn

qα,a(β, s)Aβ .

For all a ∈ En, α ∈ Vn, the qα,a : Vn × Z2 → R≥0 are probability functions,

(iii) Denote by Pρ,a(s) the probability of obtaining outcome s for a measurement of Ta on

the state ρ. Then, the Born rule Pρ,a(s) = Tr(Πa,sρ) takes the form

Tr(Πa,sρ) =
∑
α∈Vn

pρ(α)Qa(s|α).

Therein, Qa(s|α) is given by Qa(s|α) :=
∑
β∈Vn qα,a(β, s). Hence 0 ≤ Qa(s|α) ≤ 1, for

all a, s, α.

The above Theorem 1, and its application to the classical simulation of quantum compu-

tation with magic states, is our main motivation for studying the polytopes Λn. The theorem

does not speak about the Clifford gates; however, those are also positively represented (see

the SM of [9], Sec. I). Alternatively, the Clifford gates may be propagated past the last mea-

surement in any given QCM circuit, and then discarded. They do not add computational

power beyond that afforded by the Pauli measurements [32].

Cnc vertices. There is an infinite family of vertices of the Λ-polytopes, the so-called cnc

vertices, which is completely understood. Any cnc vertex in Vn has the form

AγΩ =
1

2n

∑
v∈Ω

(−1)γ(v)Tv (3)

where Ω ⊂ En is a maximal cnc set, to be defined below. The set of n-qubit cnc-type vertices

are denoted by Vcnc
n .

“Cnc” in ‘cnc set Ω’ stands for “closed noncontextual”, and means the following. (Closure)

A set Ω ⊂ En is closed if v, w ∈ Ω and [v, w] = 0 implies that v +w ∈ Ω. (Noncontextuality)

Ω admits a consistent noncontextual value assignment γ : Ω −→ Z2. That is, the eigenvalue

found in the measurement of the Pauli observable Tv is (−1)γ(v). The consistency requirement
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is that for a triple of commuting Pauli observables Tv, Tw, Tv+w, with Tv+w = (−1)β(v,w)TvTw,

it holds that γ(v + w) = γ(v) + γ(w) + β(v, w) mod 2.

The reason for imposing the consistency condition is that if the three observables Tv, Tw,

Tv+w are simultaneously measured, on any quantum state, then the measurement outcomes

of these observables satisfy the above constraint with certainty. Hence we require the same

of all considered value assignments γ. The consistency condition also explains the need for

the closure property. If v, w ∈ Ω then the expectation values for Tv, Tw are extremal. The

expectation value for Tv+w must then also be extremal, hence we require v + w ∈ Ω for AγΩ
to reproduce this.

The following is known about the cnc vertices:

1. For any n ∈ N, the convex hull of Vcnc
n is closed under Pauli measurement. That is, for

any projector Πa,s onto the eigenspace of Ta corresponding to the eigenvalue (−1)s it

holds that if Tr(Πa,sA
γ
Ω) > 0 then Πa,sA

γ
ΩΠa,s is a probabilistic linear combination of

cnc vertices (Theorem 2 of [24].)

2. The update of the pair (Ω, γ) under Pauli measurement is computationally efficient

(Theorem 3 of [24]).

3. The phase point operators AγΩ are extreme points of the respective polytopes Λn [9,29].

4. The cnc sets Ω are classified for all n ∈ N (Theorem 1 of [24]; also see Theorem 2 of [25]).

Item 3 provides an element of continuity between the simulation method [9] of present in-

terest and the earlier simulation schemes based on Wigner functions [13, 23, 24]. Namely,

the phase point operators AγΩ were initially devised for a classical simulation scheme [24] of

quantum computation with magic states in which negativity can arise. The latter is the mul-

tiqubit counterpart to the initial work on the role of Wigner function negativity for quantum

computation [13], which applies only to odd Hilbert space dimension.

Duality. Each polytope Λn is the polar dual of the n-qubit stabilizer polytope On [29].

Therefore, every vertex of Λn, for any n ∈ N, corresponds to a linear inequality that bounds

On.

This has an implication for n = 2. Namely, the linear inequalities bounding O2 have been

described in [33], see Table II and Eq. (22) therein. This immediately provides a classification

of the vertices of Λ2.

The vertex enumeration problem, namely the problem of computing the vertices of a

polytope given a description as the intersection of the set of halfspaces, is a fundamental

problem in computational geometry. Algorithms exist for this problem (e.g. lrslib [35] and

cddlib [36]) with computational complexity which typically depends on the input size (the

number of bounding halfspace inequalities), the output size (the number of vertices), and the

dimension of the space. In our case, the dimension of the space Herm1(2n) grows exponentially

with the number n of qubits, and the input size grows like 2[1/2+o(1)]n2

[37]. This makes

numerical computation of the vertices of Λn difficult even for small n.

So far a complete enumeration has only been possible for up to n = 2 [33]. There are 60

bounding inequalities of Λ2 and 22320 vertices of Λ2 which fall into 8 orbits under the action

of the Clifford group.
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It is possible that the Clifford group symmetry of Λn could be used to reduce the vertex

enumeration problem to the problem of enumerating a representative vertex from each Clifford

orbit [38]. It is unknown to the authors whether this reduction is sufficient to enumerate the

vertices of Λn for n ≥ 3.

2.3 Status of the tensor product

Given two extremal points Aα ∈ Λn and Aβ ∈ Λm, is the tensor product Aα⊗Aβ an extremal

point of Λn+m?—This is not generally the case; in fact, Aα ⊗Aβ may not even be contained

in Λn. We can show this by example. Consider the one-qubit vertex [9]

A0 =
I +X + Y + Z

2
.

Then it holds that A0⊗A0 6∈ Λ2. To see this, consider the stabilizer (Bell) state |B11〉 defined

by the stabilizer relations Z1 ⊗ Z2|B11〉 = −|B11〉, X1 ⊗ X2|B11〉 = −|B11〉. With these

relations, 〈B11|A0 ⊗ A0|B11〉 = −1/2. Hence, with Eq. 2, A0 ⊗ A0 6∈ Λ2. In the terminology

of the Pusey-Barrett-Rudolph (PBR) theorem [30], the HVM of Theorem 1 does not satisfy

the condition of “preparation independence”, thereby evading the consequences of the PBR

theorem.

From the above discussion it appears that the tensor product does not play a particular

role in the HVM described by Theorem 1. Or does it?

3 Mapping vertices of Λm to Λn

In the introduction we asked whether the extremal points of the state polytopes Λn can be

constructed from smaller parts, and Section 2.3 concluded with the question of whether there

is any significant role for the tensor product in the present formalism. It turns out that the

two questions are related through a common answer.

In this section we construct a map Λm → Λn, for any m < n, that sends a vertex of

Λm to a vertex of Λn. Moreover, under this map Vm maps injectively into Vn. For the

statement of our result we recall the definition of stabilizer projectors. Let ΠJ,s denote the

projector corresponding to the pair (J, s) consisting of an isotropic subspace J ⊂ En and a

value assignment s : J → Z2. It has the form

ΠJ,s =
1

|J |
∑
v∈J

(−1)s(v)Tv

where | | denotes the number of elements. For each stabilizer state |σ〉 ∈ Sn the projector

Πσ = |σ〉〈σ| can be uniquely written as a projector of the form ΠI,s for some maximal isotropic

subspace I ⊂ En and a value assignment s : I → Z2.

Theorem 2 Let J ⊂ En be an isotropic subspace of dimension d = n−m and S ∈ Sp2n(Z2)

such that S(J0) = J where J0 = 〈xm+1, · · · , xn〉. Given value assignments r0 : J0 → Z2 and

r : J → Z2 define a linear map

ΦJ,r : Herm(2m)→ Herm(2n)

by the formula

ΦJ,r(X) = U(X ⊗ΠJ0,r0)U† (4)
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where U is a Clifford unitary that implements S and satisfies UΠJ0,r0U
† = ΠJ,r. Then the

map ΦJ,r satisfies the following properties:

1. The image of ΦJ,r is given by {(ΠJ,rYΠJ,r)/Tr(YΠJ,r)| Y ∈ Λn and Tr(YΠJ,r) 6= 0}.

2. ΦJ,r is injective and maps a vertex X ∈ Λm to a vertex of Λn.

3. A vertex X is of cnc-type (see Eq. (3)) if and only if ΦJ,r(X) is of cnc-type.

Presently, very little is known about the vertices of the polytopes Λn, for n ≥ 3; and Theo-

rem 2 extends that knowledge base. Essentially, the only fact already known is that the cnc

construction [24] provides vertices of Λn for all n. Cnc vertices have the property that they

consist of a core tensored with a stabilizer tail, cf. Lemma 11 in [24]. Therein, the cores

are related to Majorana fermions and the Jordan-Wigner transformation. Now, Theorem 2

establishes that all vertices of Λn, for any n, have the same overall structure: they consist of

a core tensored with a stabilizer tail.

We now prepare for the proof of Theorem 2. We first consider the case (J, r) = (J0, r0)

so that S is the identity matrix, and also the Clifford unitary U is chosen to be the identity

matrix. For X ∈ Herm(2m) we can write

X =
1

2m

∑
v∈Em

αvT
(m)
v

and Eq. (4) implies that

ΦJ,r(X) = X ⊗ΠJ,r =
1

2n

∑
v+u∈Em+J

(−1)r(u)αvT
(n)
v+u. (5)

The first step is to show that ΦJ,r maps Λm into Λn. Given a value assignment s : I → Z2

and a subspace J ⊂ En we write s|I∩J for the restriction of s to the intersection I ∩J . Given

another value assignment s′ : I → Z2 the delta function δs′,s takes the value 1 if s′ = s as

functions on I and 0 otherwise.

Lemma 1 Let I be a maximal isotropic subspace of En. Then

Tr(ΦJ,r(X)ΠI,s) = δr|K∩J ,s|K∩J

|K|
2n

Tr(XΠK∩Em,s|K∩Em
)

where K = (Em + J) ∩ I. In particular, if X ∈ Λm then ΦJ,r(X) ∈ Λn.
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Proof of Lemma 1. We have Tr(ΦJ,r(X)) = 1 since Tr(X) = 1. We calculate

Tr(ΦJ,r(X)ΠI,s) =
1

2n

∑
v+u∈Em+J

(−1)r(u)αvTr(Tv+uΠI,s)

=
1

2n

∑
v+u∈Em+J

(−1)r(u)αv
1

|I|
∑
w∈I

(−1)s(w)Tr(Tv+uTw)

=
1

2n

∑
v+u∈(Em+J)∩I

(−1)r(u)αv(−1)s(v+w)

=
|K ∩ J |

2n

∑
v∈K∩Em

αv(−1)s(v)

(
1

|K ∩ J |
∑

u∈K∩J
(−1)r(u)(−1)s(u)

)

= δr|K∩J ,s|K∩J

|K ∩ J |
2n

∑
v∈K∩Em

αv(−1)s(v)

= δr|K∩J ,s|K∩J

|K ∩ J ||K ∩ Em|
2n

Tr(XΠK∩Em,s|K∩Em
)

= δr|K∩J ,s|K∩J

|K|
2n

Tr(XΠK∩Em,s|K∩Em
) ≥ 0.

As a consequence of this calculation and the definition of Λn the image ΦJ,r(X) belongs to

Λn for any X ∈ Λm. �
Next we show that if X ∈ Λm is a vertex then ΦJ,r(X) is a vertex of Λn. To achieve this

we will use the following characterization of vertices of a polytope:

Let P be a polytope in RN . Then a point p ∈ P is a vertex if and only if there exists no

non-zero x ∈ RN such that p± x ∈ P [31, page 18].

Our polytope Λn lives inside Herm1(2n) and we can identify Herm1(2n) with R22n−1 by

choosing 12n/2n to be the origin. Therefore to prove that ΦJ,r(X) ∈ Λn is a vertex we need

to show that {ΦJ,r(X)± Y } 6⊂ Λn for any Y ∈ Herm(2n) of trace zero. Let us write

Y =
1

2n

∑
06=v∈En

βvT
(n)
v

and define another trace zero operator

Ỹ =
1

2m

∑
06=v∈Em

β̃vT
(m)
v . (6)

The coefficients β̃v are given by Tr(YvΠJ,r) where Yv = 1/2n
∑
u∈J βu+vT

(n)
u ∈ Herm(2n).

Furthermore, we have the relation

β̃v =
1

|J |
∑
u∈J

βu+v(−1)r(u). (7)

Lemma 2 Let I ′ ⊂ Em be a maximal isotropic subspace and s′ : I ′ → Z2 be a value assign-

ment. Then

Tr(YΠJ+I′,r∗s′) = Tr(ỸΠI′,s′) (8)

where r ∗ s′ : (J + I ′)→ Z2 is the value assignment defined by r ∗ s′(u+ v) = r(u) + s′(v).
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Proof of Lemma 2. We calculate

Tr(YΠJ+I′,r∗s′) =
1

|J ||I ′|
∑
v∈I′

∑
u∈J

βu+v(−1)r(u)+s(v)

=
1

|I ′|
∑
v∈I′

(−1)s(v) 1

|J |
∑
u∈J

βu+v(−1)r(u)

=
1

|I ′|
∑
v∈I′

(−1)s(v)β̃v

= Tr(ỸΠI′,s′).

For the third equality we use Eq. (7). �
We are now ready to give a proof of our main result, Theorem 2.

Proof of Theorem 2. We begin by proving Theorem 2 for (J, r) = (J0, r0) in which case the

map is given by Eq. (5). Part (1) follows immediately from comparing ΠJ0,r0YΠJ0,r0 after

normalization with Eq. (5). For part (2) note that Lemma 1 says that ΦJ,r(Λm) ⊂ Λn. Let

X be a vertex of Λm. We will show that {ΦJ,r(X)± Y } 6⊂ Λn for any Y ∈ Herm(2n) of trace

zero. Since X is a vertex either X + Ỹ or X − Ỹ lies outside of Λm, where Ỹ ∈ Herm(2m) is

defined in Eq. (6). WLOG assume that X + Ỹ 6∈ Λm. This means that there is a pair (I ′, s′)

such that Tr((X + Ỹ )ΠI′,s′) < 0. Lemma 1 with I = J + I ′ and s = r ∗ s′ gives

Tr(ΦJ,r(X)ΠJ+I′,r∗s′) = Tr(XΠI′,s′). (9)

Using Eq. (9) and Eq. (6) we obtain

Tr((ΦJ,r(X) + Y )ΠJ+I′,r∗s′) = Tr((X + Ỹ )ΠI′,s′) < 0,

thus X + Y lies outside of Λn. This completes the proof of part (2). Next we prove part (3).

If X = AγΩ for some cnc set (Ω, γ) where Ω ⊂ Em then Eq. (5) implies that

ΦJ,r(A
γ
Ω) =

1

2n

∑
u+v∈J+Em

(−1)r(u)+γ(v)Tu+v = Ar∗γJ+Ω.

Therefore we obtain a vertex of cnc-type. Conversely, if ΦJ,r(X) is a vertex of cnc-type given

by Aγ̃
Ω̃

for some cnc set (Ω̃, γ̃) then again from Eq. (5) we see that X = AγΩ where Ω = Ω̃∩Em
and γ is given by the restriction γ̃|Ω.

For the general case let J ⊂ En be an arbitrary isotropic subspace and r : J → Z2 be

a value assignment. We will write J0 for 〈xm+1, · · · , xn〉 and r0 : J0 → Z2 for the value

assignment defined by r0(v) = 0 for all v ∈ J0. Let U be a Clifford unitary as described in

the statement of the Theorem. We think of ΦJ,r as the composite of two maps:

ΦJ,r(X) = UΦJ0,r0(X)U†.

Part (1) follows from the relation UΠJ0,r0U
† = ΠJ,r. Part (2) holds since U acts on Λn by

permuting its vertices [9]. Also this action maps a cnc-type vertex to a cnc-type vertex, which

implies part (3). �
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4 Reduction of the classical simulation

We now turn to the second question posed in the introduction, namely whether the classi-

cal simulation of the update of the composite vertices—whose existence was established in

Theorem 2—under the operations of QCM can be reduced to the classical simulation of their

constituent parts. This is indeed the case, as Theorem 3 below demonstrates.

Theorem 3 Any quantum computation in the magic state model (QCM) that operates on an

initial state U(XA ⊗ (Πσ)B)U†, where X ∈ Λm, is an m-qubit vertex and Πσ := |σ〉〈σ| is the

projector on an (n−m)-qubit stabilizer state |σ〉 and U is an n-qubit Clifford unitary, can be

efficiently reduced to a QCM on initial state X alone.

The theorem says that supplementing a vertex X with a stabilizer state does not increase the

computational power of QCM. A proof of a similar result is given in Ref. [32, §V] for the case

where XA in the statement of Theorem 3 is replaced by the state |T 〉〈T |⊗m.

Proof of Theorem 3. We start from the version of QCM where the quantum computation

consists of a sequence of Pauli measurements. All Clifford unitaries can be propagated forward

past the last measurement (conjugating the measured observables in the passing), and then

discarded. Thus, wlog. we consider initial states of form X̃ = XA ⊗ (Πσ)B .

Let T denote a finite sequence of Pauli observables on A⊗B. We give an explicit procedure

to replace the sequence T by an equivalent sequence T̃ (A)
of observables that act only on the

subsystem A. The proof is by induction, and the induction hypothesis is that, at time t, the

sequence T≤t of measurements has been replaced by a computationally equivalent sequence

T̃ (A)
≤t of Pauli measurements on the register A only. This statement is true for t = 0, i.e., the

empty measurement sequence. We now show that the above statement for time t implies the

analogous statement for time t+ 1.

At time t, the state of the quantum register evolved under the computationally equivalent

measurement sequence T̃ (A)
≤t is Ỹ (t) = Y (t)A⊗ (Πσ)B . We now consider the Pauli observable

T (t + 1) ∈ T to be measured next, and write T (t + 1) = RA(t + 1) ⊗ SB(t + 1). There are

two cases:

Case I: T (t + 1) commutes with the entire stabilizer S of |σ〉. Hence, also SB(t + 1)

commutes with S. But then, either SB(t + 1) or −SB(t + 1) is in S, and SB(t + 1) may be

replaced by its eigenvalue ±1 in the measurement. Hence, the measurement of T (t + 1) is

equivalent to the measurement of ±RA(t+ 1).

Case II: T (t + 1) does not commute with the entire stabilizer S of |σ〉. Then, the mea-

surement outcome st+1 is completely random. Further, there exists a Clifford unitary V such

that

V S(t+ 1)V † = 〈XB:1, XB:2, .., XB:m〉, V T (t+ 1)V † = ZB:1.

Therefore, the state resulting from the measurement of T (t + 1), with outcome st+1 on the

state Ỹ (t) is the same state as the one resulting from the following procedure:

1. Apply the Clifford unitary V to Ỹ (t) = Y (t)A ⊗ (Πσ)B , leading to

V Ỹ (t)V † = Y ′(t)⊗ |+〉〈+|B ,

where |+〉B :=
⊗

i∈B |+〉B:i.
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2. Measure ZB:1 on Y ′(t)⊗ |+〉〈+|B , with outcome st+1.

3. Apply V †.

Now, note that the measurement in Step 2, of the Pauli observable ZB:1 is applied to the

stabilizer state |+〉B . The result is |σ′(t+ 1)〉 = |st+1〉B:1

⊗m
j=2 |+〉B:j ; that is the first qubit

of subsystem B is now in a Z-eigenstate, and the other qubits are unchanged. Therefore, after

normalization, the effect of the measurement can be replaced by the unitary (XB:1)
st+1 HB:1.

Thus, the whole procedure may be replaced by the Clifford unitary V † (XB:1)
st+1 HB:1 V .

But Clifford unitaries don’t need to be implemented. They are just propagated past the

last measurement, thereby affecting the measured observables by conjugation whereby their

Pauli-ness is preserved. In result, in Case II, the measurement of T (t + 1) doesn’t need to

be performed at all. It is replaced by a coin flip, and efficient classical post-processing of the

subsequent measurement sequence.

We conclude that in both the cases I and II, given the induction assumption, the original

measurement sequence T≤t+1 can be replaced by a computationally equivalent measurement

sequence T̃ (A)
≤t+1 acting on register A only. By induction, the complete measurement sequence

T can be replaced by a computationally equivalent sequence T̃ (A) acting on A only.

Since the measurements T̃ (A) are applied to an unentangled initial state XA ⊗ (Πσ)B ,

the register B may be dropped without loss of information. Thus, any sequence of Pauli

measurements on the initial state XA ⊗ (Πσ)B is efficiently reduced to a Pauli measurement

sequence of at most the same length on X alone. �

Discussion. Theorem 3 extends the previously known range of efficient classical simulation

of QCM by sampling from the polytopes Λn. The prior result is Theorem 3 from [24]. It

says that if a quantum state ρ can be represented as a probabilistic linear combination of cnc

vertices, and the probability distribution defining this expansion can be efficiently sampled

from, then any QCM on ρ can be efficiently classically simulated. Classical simulation of

probability distributions over stabilizer states is contained therein as a limiting case.

To apply the above Theorem 3, we define vertex classes

WK := {U(Aα ⊗Πσ)U†|Aα ∈ ΛK , |σ〉 ∈ Sn−K , U ∈ Cln, n ≥ K}

consisting of a union of certain n-qubit vertices for n ≥ K. Therein, Πσ is the projector

corresponding to a (n −K)-qubit stabilizer state |σ〉 and Cln is the n-qubit Clifford group.

Every class WK contains of vertices on arbitrarily many qubits for n ≥ K. The present

extension of Theorem 3 of [24], based on Theorem 3 above, is the following.

Corollary 1 Consider an n-qubit quantum state that can be expanded into a probabilistic lin-

ear combination of vertices from the set WK , for a given value of K. Then, the computational

cost of simulating any QCM on ρ is polynomial in n.

Note that the simulation is (likely to be) inefficient in K.

5 Beyond vertices of cnc-type

In the previous section we established that the complexity of simulating QCM for a composite

vertex U(XA ⊗ (Πσ)B)U† efficiently reduces to the simulation of QCM on XA. But which
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vertices X can we actually put explicitly into this reduction?—To date, the only family of

vertices which is explicitly described, including the update under Pauli measurements, are

the vertices of cnc-type.

For a single qubit, all eight vertices are equivalent under Clifford transformations, and

cnc. For two qubits, there are 8 Clifford-equivalence classes of vertices [29,33], two of which

are of cnc-type.

In this section, we give a complete characterization of the update rules under Pauli mea-

surement for one class of two-qubit vertices that are not cnc. A distinguishing feature of the

vertices considered is that the expectations 〈Tv〉 take values in {0,±1/2,±1} whereas in the

cnc case these expectations belong to {0,±1}.
Specifically, we are concerned with the Clifford orbit of the vertex denoted by Aα0

whose
coordinates in the Pauli basis (i.e. the expectations 〈Tv〉) are given as follows

II IX XI XX IZ IY XZ XY ZI ZX Y I Y X ZZ ZY Y Z Y Y
1 −1/2 1/2 0 −1/2 −1/2 −1 0 1/2 −1 −1/2 0 0 0 0 1

We know that there are 1920 vertices in this orbit (by computer calculation). The set of

vertices in the Clifford orbit of Aα0 will be denoted by

O = {UAα0
U†| U ∈ Cln}. (10)

For our construction we will consider noncontextual subsets of E2 that are not necessarily

closed. Let Ω be a subset of En and γ : Ω→ Z2 be a value assignment. Associated to (Ω, γ)

we can define the operator AγΩ as in Eq. (3).

Construction. The vertices in the Clifford orbit O given in Eq. (10) have the following

form

AγI,Ω = AγI +
1

4
(Aγ

′

Ω −A
γ′′

Ω ). (11)

where

C.1 I ⊂ E2 is a maximal isotropic subspace.

C.2 γ : I → Z2 is a value assignment.

C.3 The set Ω is constructed from a collection C described in (C.4) by the following formula

Ω = E2 − Ω⊥ where Ω⊥ =

(⋃
J∈C

J

)
− {0}. (12)

C.4 The collection C = C(I) of maximal isotropics (see Fig. (1)) is defined using the following

rules

R.1 C contains I,

R.2 for each J ∈ C and 0 6= v ∈ J exactly one of the two subspaces J ′ ∈ I(E2) − {J}
containing v is contained in C.

C.5 The value assignments γ′ and γ′′ on Ω are uniquely specified by the requirements

V.1 γ′(0) = γ′′(0) = 0,
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V.2 γ′(v) = 1 + γ′′(v) for v ∈ Ω− {0},
V.3 γ′(v) + γ′(w) +β(v, w) = γ(v+w) for v, w ∈ Ω such that [v, w] = 0 and v+w ∈ I.

Note that (V.2) implies that γ′′ also satisfies this property.

In summary a vertex in the Clifford orbit O is specified by (I, γ, C). Counting these com-

ponents: 15 maximal isotropics, 22 value assignments, 25 collections C we obtain a total of

1920 = 15× 27 vertices. This covers all the vertices in the Clifford orbit of Aα0
.

XI

XZ

ZY
Y X

Y Y
ZX

IX

ZI
ZX

YX
Y I

XX

ZY
Y Z

ZZ

Y Y

IZ

Y Z

Y I

ZZ

ZI

IY

Y I

Y Y

ZI ZY

XY

Y Z

ZX

YX ZZ

Fig. 1. The poset of isotropic subspaces of E2. Large blue nodes correspond 1-dimensional

subspaces and small red nodes correspond to 2-dimensional subspaces. Each node at the boundary

repeats 3 times and they are identified. The dark red colored nodes represent the maximal isotropic
subspaces in the collection C corresponding to the vertex Aα0 .

The vertex Aα0
has the following parameters: I = 〈x1 + z2, z1 + x2〉, C consists of the

following collection

{〈x1 + z2, z1 +x2〉, 〈x1 +x2, z1 + z2〉, 〈x1 +y2, y1 + z2〉, 〈z1 +y2, y1 +x2〉, 〈y1 +x2, x1 +y2〉, 〈z1 +y2, y1 + z2〉},
and the value assignments are given by

II IX XI XX IZ IY XZ XY ZI ZX Y I Y X ZZ ZY Y Z Y Y
(−1)γ 1 −1 −1 1

(−1)γ
′

1 −1 1 −1 −1 1 −1

(−1)γ
′′

1 1 −1 1 1 −1 1

The set Ω can be calculated from C using Eq. (12) and it turns out to be {0, x1, y1, z1, x2, y2, z2}.
Our strategy for computing the update rules for AγI,Ω is to consider the update of AγI and

1
4 (Aγ

′

Ω − A
γ′′

Ω ) in Eq. (11) separately. First one can be updated using the update rule [24] of

cnc-type vertices:

Πa,sA
γ
IΠa,s =


δsa,γ(a)A

γ
I a ∈ I

1
2A

γ×a
I×a a /∈ I.

(13)

For the second one we first define a cnc set Ω̃ obtained as the closure of Ω ∩ 〈a〉⊥ under

inference. We also extend γ′ and γ′′ on this cnc set in the expected way. The resulting
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value assignments are denoted by γ̃′ and γ̃′′, respectively. Then the update of 1
4 (Aγ

′

Ω − A
γ′′

Ω )

coincides with the update of 1
4 (Aγ̃

′

Ω̃
−Aγ̃

′′

Ω̃
) by the properties of γ′ and γ′′. By construction Ω̃

is contained in 〈a〉⊥, in particular it contains a. Eq. (13) gives us

Πa,sA
γ̃′

Ω̃
Πa,s = δsa,γ̃′(a)A

γ̃′

Ω̃
.

Replacing γ̃′ with γ̃′′ gives the update rule for Aγ̃
′′

Ω̃
. Next we give the update rules for AγI,Ω.

The proof of this result is given in Appendix 1.

Theorem 4 The update rules for AγI,Ω under Pauli measurements consist of the following

three cases:

Case I. Suppose that a ∈ I and a /∈ Ω.

(1.a) If γ(a) 6= s then Πa,sA
γ
I,ΩΠa,s = 0.

(1.b) If γ(a) = s then

Πa,sA
γ
I,ΩΠa,s

Tr(AγI,ΩΠa,s)
=

2Aα̃0

〈a〉⊥ +Aα̃1

〈a〉⊥ +Aα̃2

〈a〉⊥

4

where the value assignments are given in Eq. (A.2).

Case II. Suppose that a /∈ I and a ∈ Ω.

(2.a) If γ̃′(a) 6= s then
Πa,sA

γ
I,ΩΠa,s

Tr(AγI,ΩΠa,s)
= Aα̃

′

〈a〉⊥

where the value assignments are given in Eq. (A.3).

(2.b) If γ̃′(a) = s then

Πa,sA
γ
I,ΩΠa,s

Tr(AγI,ΩΠa,s)
=

2Aα̃〈a〉⊥ +Aα̃
′

〈a〉⊥

3

where the value assignments are given in Eq. (A.4).

Case III. Suppose that a /∈ I and a /∈ Ω.

(3.a) If γ̃′(a) 6= s then

Πa,sA
γ
I,ΩΠa,s

Tr(AγI,ΩΠa,s)
=
Aα̃0

〈a〉⊥ +Aα̃1

〈a〉⊥

2

where the value assignments are given in Eq. (A.5).

(3.b) If γ̃′(a) = s then

Πa,sA
γ
I,ΩΠa,s

Tr(AγI,ΩΠa,s)
=
Aα̃0

〈a〉⊥ +Aα̃1

〈a〉⊥

2

where the value assignments are given in Eq. (A.6).
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Discussion. Prior to this work the only class of n-qubit vertices that is known to give effi-

cient classical simulation was the class of cnc vertices [24]. For the efficiency of the simulation

each update rule is required to produce a probability distribution which can be efficiently

sampled. Our description of the new type of vertices in Λ2 and their update rules under Pauli

measurements allows us to extend this result to a larger class of vertices. Moreover, this is

not restricted to n = 2 case. Theorem 3 implies that the classically efficiently simulable sector

of Λn extends with these new classes of vertices. To make this precise (relying on Theorem

2) we enlarge the set of cnc-type vertices by taking the disjoint union of n-qubit cnc vertices

with the image of the vertices in O defined in Eq. 10 under the Φ-map:

V ′n := Vcnc
n t {U(Aα ⊗Πσ)U†| Aα ∈ O}

where Πσ is a (n− 2)-qubit stabilizer projector and U is an n-qubit Clifford unitary.

Corollary 2 Consider an n-qubit quantum state ρ that can be expressed as a probabilistic

linear combination pρ : V ′n → R≥0. If pρ can be efficiently sampled from then the classical

simulation of any QCM on ρ is efficient.

6 Conclusion

This paper is an expedition into the state polytopes Λn [9, 29], which are presently largely

uncharted territory. The study of these polytopes is motived by the fact that they form the

structural basis of a hidden-variable description of universal quantum computation [9].

Here we have shown that certain extremal points of the Λn can be built from “smaller

parts”, namely a vertex of state polytope Λm on a smaller number m < n of qubits, and a

stabilizer state. Further, we have shown that the classical simulation of the evolution of such

composite vertices can be reduced to the evolution of their parts. We have also described a

new class of vertices outside the known cnc classification, together with their update rules

under Pauli measurements.

A possible next question is as follows. The map Φ takes vertices of Λm to vertices of Λn,

n > m, by tensoring on projectors onto stabilizer states. Are there generalizations of this

map that use more general constructs than stabilizer states as parameters of the mapping,

and more general notions of composition than the tensor product?

To conclude with a broader comment, the state polytopes Λn are a novel object in the

theory of quantum computation and foundations of quantum mechanics. It is presently un-

known how easy or hard their study is going to be, and which techniques will be useful. With

the present investigation, we have made a first dent into the subject.
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Appendix A Proof of Theorem 4

As a preparation for the update rules of AγI,Ω we consider certain linear combinations of

operators in Herm(2) and express them as probabilistic mixtures of the vertices of Λ1. We

will denote the vertices in Λ1 by AαE where α is a value assignment on E = E1. Other points

in Λ1 that we are interested in are the projectors Πv,sv where v = x, y, z, where y = x + z,

and sv = 0, 1.

Lemma 3 We have the following decompositions for the points in Λ1. Let v, w ∈ E be

non-zero distinct elements.

1. Let α0 and α1 be value assignments on E defined by α0(v) = α1(v) = sv, α1(w) =

1 + α0(w) and α1(v + w) = 1 + α0(v + w). Then

Πv,sv =
Aα0

E +Aα1

E

2
.

2. Let α0 and α1 be value assignments on E defined by α0(v) = α1(v) = sv, α0(w) =

α1(w) = sw and α1(v + w) = 1 + α0(v + w). Then

Πv,sv +
Πw,sw −Πw,sw+1

2
=
Aα0

E +Aα1

E

2
.

3. Let α′ be value assignment on E defined by α′(v) = α(v), α′(w) = 1 + α(w) and

α′(v + w) = 1 + α(v + w). Then

2Πv,α(v) +AαE
3

=
2AαE +Aα

′

E

3
.

4. Let α′ be value assignment defined in (3). Then

2Πv,α(v) −AαE = Aα
′

E .

5. Let αi, i = 0, 1, 2, be defined by αi(v) = sv for all i, α0(w) = α1(w) = 1 + α2(w) = sw,

α1(v + w) = α2(v + w) = 1 + α0(v + w). Then

Πv,sv +
Πw,sw −Πw,sw+1

4
=

2Aα0

E +Aα1

E +Aα2

E

4
.

http://cgm.cs.mcgill.ca/~avis/C/lrs.html
https://github.com/cddlib/cddlib
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Proof of Lemma 3. Verification is straightforward: We write each side of the equations in the

Pauli basis and compare. �
Let us label the maximal isotropics in 〈a〉⊥ by Iv = 〈ṽ, a〉, Iw = 〈w̃, a〉 and Iv+w =

〈ṽ + w̃, a〉. We introduce a map

Λ1 → Λ2 (A.1)

determined by AαE 7→ Aα̃〈a〉⊥ where α̃ is specified by α̃(a) = sa, α̃(b) = α(b) for b = ṽ, w̃, ṽ+ w̃.

In the following proof we label the maximal isotropic subspaces of 〈a〉⊥ by Iv, Iw, Iv+w.

Proof of Theorem 4. In Case I we have

Πa,sA
γ
I,ΩΠa,s = δsa,γ(a)

(
AγI +

1

4
(Aγ̃

′

Ω̃
−Aγ̃

′′

Ω̃
)

)
where we used γ̃′(a) = γ̃′′(a) = γ(a) since a = v + w for some v, w ∈ Ω − {0}. In this

case I and Ω̃ are maximal isotropics in 〈a〉⊥ intersecting at 〈a〉. (1.a) follows immediately by

calculating Πa,sA
γ
I,ΩΠa,s. For (1.b) we observe that Lemma 3 part (5) and Eq. (A.1) imply

that
Πa,sA

γ
I,ΩΠa,s

Tr(AγI,ΩΠa,s)
= AγI +

1

4
(Aγ̃

′

Ω̃
−Aγ̃

′′

Ω̃
) =

2Aα̃0

〈a〉⊥ +Aα̃1

〈a〉⊥ +Aα̃2

〈a〉⊥

4

where Iv = I, Iw = Ω̃, sv = γ(ṽ), sw = γ̃′(w̃),

α̃0(a) = α̃1(a) = α̃2(a) = sa

α̃0(ṽ) = α̃1(ṽ) = α̃2(ṽ) = γ(ṽ)

α̃0(w̃) = α̃1(w̃) = 1 + α̃2(w̃) = γ̃′(w̃)

1 + α̃0(ṽ + w̃) = α̃1(ṽ + w̃) = α̃2(ṽ + w̃).

(A.2)

Case II follows from

Πa,sA
γ
I,ΩΠa,s

Tr(AγI,ΩΠa,s)
=

1

2
Aγ×aI×a +

1

4

(
δsa,γ̃′(a)A

γ̃′

Ω̃
− δsa,1+γ̃′(a)A

γ̃′′

Ω̃

)
since γ̃′′(v) = γ̃′(v) + 1 for v ∈ Ω − {0}. Here Ω̃ = 〈a〉⊥. For (2.a) Lemma 3 part (4) and

Eq. (A.1) imply that
Πa,sA

γ
I,ΩΠa,s

Tr(AγI,ΩΠa,s)
=

1

2
Aγ×aI×a −

1

4
Aγ̃

′′

Ω̃
= Aα̃

′

〈a〉⊥

where Iv = I × a, Iw is one of the other two isotropics,

α̃′(a) = sa

α̃′(ṽ) = γ̃′′(ṽ)

α̃′(w̃) = 1 + γ̃′′(w̃)

α̃′(ṽ + w̃) = 1 + γ̃′′(ṽ + w̃).

(A.3)

For (2.a) Lemma 3 part (4) and Eq. (A.1) imply that

Πa,sA
γ
I,ΩΠa,s

Tr(AγI,ΩΠa,s)
=

1

2
Aγ×aI×a +

1

4
Aγ̃

′

Ω̃
=

2Aα̃〈a〉⊥ +Aα̃
′

〈a〉⊥

3
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where Iv = I × a, Iw is one of the other two isotropics, α̃ = γ̃′,

α̃′(a) = sa

α̃′(ṽ) = γ̃′(ṽ)

α̃′(w̃) = 1 + γ̃′(w̃)

α̃′(ṽ + w̃) = 1 + γ̃′(ṽ + w̃).

(A.4)

Case III follows from the following computation

Πa,sA
γ
I,ΩΠa,s =

1

2
Aγ×aI×a +

δsa,γ̃′(a)

4

(
Aγ̃

′

Ω̃
−Aγ̃

′′

Ω̃

)
.

We have γ̃′(a) = γ̃′′(a) since a can be written as a = v+w with v, w ∈ Ω−{0}. In this case I

and Ω̃ are maximal isotropics contained in 〈a〉⊥ intersecting at 〈a〉. For (3.a) Lemma 3 part

(1) and Eq. (A.1) imply that

Πa,sA
γ
I,ΩΠa,s

Tr(AγI,ΩΠa,s)
=

1

2
Aγ×aI×a =

Aα̃0

〈a〉⊥ +Aα̃1

〈a〉⊥

2

where Iv = I × a, Iw = Ω̃, sv = γ(ṽ),

α̃0(a) = α̃1(a) = sa

α̃0(ṽ) = α̃1(ṽ) = γ(ṽ)

α̃1(w̃) = 1 + α̃0(w̃)

α1(ṽ + w̃) = 1 + α̃0(ṽ + w̃)

(A.5)

For (3.b) Lemma 3 part (2) and Eq. (A.1) imply that

Πa,sA
γ
I,ΩΠa,s

Tr(AγI,ΩΠa,s)
=

1

2
Aγ×aI×a +

1

4
(Aγ̃

′

Ω̃
−Aγ̃

′′

Ω̃
) =

Aα̃0

〈a〉⊥ +Aα̃1

〈a〉⊥

2

where Iv = I × a, Iw = Ω̃, sv = γ(ṽ), sw = γ̃′(w̃),

α̃0(a) = α̃1(a) = sa

α̃0(ṽ) = α̃1(ṽ) = γ(ṽ)

α̃0(w̃) = α̃1(w̃) = γ̃′(w̃)

1 + α̃0(ṽ + w̃) = α̃1(ṽ + w̃).

(A.6)

Note that the case where a ∈ I and a ∈ Ω does not occur since I ∩ Ω = 0. �
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