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We show that every quantum computation can be described by a probabilistic update of a probability
distribution on a finite phase space. Negativity in a quasiprobability function is not required in states or
operations. Our result is consistent with Gleason’s theorem and the Pusey-Barrett-Rudolph theorem.
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It is often pointed out that the fundamental objects in
quantum mechanics are amplitudes, not probabilities [1,2].
This fact notwithstanding, here we construct a description
of universal quantum computation—and hence of all
quantum mechanics in finite-dimensional Hilbert spaces
—in terms of a probabilistic update of a probability
distribution. In this formulation, quantum algorithms look
structurally akin to classical diffusion problems.
While this seems implausible, there exists a well-known

special instance of it: quantum computation with magic
states (QCM) [3] on a single qubit. Compounding two
standard one-qubit Wigner functions, a hidden variable
model can be constructed in which every one-qubit
quantum state is positively represented [4]. This represen-
tation is furthermore covariant under all one-qubit Clifford
unitaries and “positivity preserving” under all one-qubit
Pauli measurements. The update under such operations
preserves the probabilistic character of the model, and
hence QCM on one qubit can be classically simulated by a
probabilistic update of a probability function on eight
elements (see Fig. 1 for illustration).
The prevailing view on the one-qubit example is that it is

an exception and that for multiple qubits negativity will
inevitably creep into any quasiprobability function of any
computationally useful quantum state, rendering classical
simulations inefficient [5]. This hypothesis is informed by
the study of Wigner functions in finite-dimensional state
spaces, which establishes Wigner function negativity as a
necessary computational resource, i.e., there can be no
quantum speedup without negativity [6–20]. A quantum
optics notion of quantumness—negativity of Wigner func-
tions [21,22]—and a computational notion—hardness of
classical simulation—thus align.
The viewpoint just summarized requires correction. As

we show in this Letter, the one-qubit case is not an
exception; rather it is an example illustrating the general
case. Every quantum state on any number of qubits can be
represented by a probability function, and the update of this
probability function under Pauli measurement is also
probabilistic. This is the content of Theorem 1 below.

We emphasize that the states and operations are both
represented positively, not just one or the other.
In Theorem 2, we apply this to quantum computation

with magic states, showing that universal quantum com-
putation can be classically simulated by the probabilistic
update of a probability distribution.
This looks all very classical, and therein lies a puzzle.

In fact, our Theorem 2 is running up against a number of
no-go theorems: Theorem 2 in [23] and the Pusey-
Barrett-Rudolph (PBR) theorem [24] say that probability
representations for quantum mechanics do not exist, and
[9–13] show that negativity in certain Wigner functions is a
precondition for speedup in quantum computation. Further,
does not Gleason’s theorem prove that the proper repre-
sentation of a state in quantum mechanics is density
matrices rather than probability distributions?
As we explain in the discussion part of this Letter, there

is no contradiction here with those works. Rather, the
above-quoted theorems make stronger assumptions than we
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FIG. 1. One-qubit model. (a) The state space Λ1 is a cube
with eight vertices corresponding to the phase point
operators Aα ¼ ½I þ ð−1ÞsxX þ ð−1ÞsyY þ ð−1ÞszZ�=2, with
α ¼ ðsx; sy; szÞ ∈ Z3

2. The physical one-qubit states lie on or
in the Bloch sphere that is contained in Λ1 and touches the
boundary of Λ1 at six points corresponding to the six one-qubit
stabilizer states. (b) Update of the phase point operators Aα under
measurement of the Pauli observable Z. Each red arrow repre-
sents a transition probability of 1=2.
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do and establish no-go theorems because of that. However,
for describing universal quantum computation—hence all
quantum mechanics in finite-dimensional Hilbert spaces—
our weaker assumptions suffice.
The remainder of this Letter is organized as follows.

First, we define our setting and state our main results,
Theorems 1 and 2. Then we prove them, and thereafter
discuss the above questions.
Setting and Results.—We focus on systems of n qubits

for any n ∈ N (the statement below applies to qudits in an
analogous manner) and consider arbitrary quantum states
evolving under sequences of Pauli measurements. The
measurements need not commute, and the sequences
may be arbitrarily long. This setting comprises universal
quantum computation with magic states.
Below we devise a probability representation for this

setting. The representation lives on a finite generalized
phase space, and its purpose is to correctly reproduce the
joint measurements statistics for all quantum states and all
sequences of Pauli measurements.
We denote the n-qubit Pauli operators by Ta ¼

iϕðaÞXðaXÞZðaZÞ, ∀ a ¼ ðaX; aZÞ ∈ Zn
2 × Zn

2 ≕En, with

XðaXÞ ≔ ⊗
n

k¼1
ðXkÞaX ½k�, etc. The phases ϕ∶En → Z4 are free

to choose, subject to the constraint that all Ta are
Hermitian. The projectors onto the eigenspaces of Pauli
observables are Πa;s ≔ ½I þ ð−1ÞsTa�=2.
The state space Λn of our probabilistic model is defined

as follows. We denote by Herm1ð2nÞ the set of Hermitian
operators on n-qubit Hilbert space H ¼ C2n with
the property that TrðXÞ ¼ 1 for all X ∈ Herm1ð2nÞ,
and by Sn the set of all n-qubit pure stabilizer states
[25–27].
Then, we define the polytope Λn as

Λn ≔ fX ∈ Herm1ð2nÞjTrðjσihσjXÞ ≥ 0; ∀ jσi ∈ Sng ð1Þ

(also see [28]). The elements X ∈ Λn are the “states”
(though not necessarily proper quantum states) that behave
“well” under all sequences of Pauli measurements; namely,
the probabilities for the outcome sequences are all non-
negative and add up to unity.
Λn is defined as the intersection of a finite number of

halfspaces. Furthermore, it is bounded [see Supplemental
Material (SM) [29], Section VI)]. Therefore, by the
Minkowski-Weyl theorem [30,31], Λn can equivalently
be described as the convex hull of finitely many extreme
points (vertices). Denote by An the set of vertices of Λn,
and the vertices by Aα ∈ An. These are our generalized
phase point operators, and the corresponding index set
fαg≕Vn is the generalized phase space.
We now have the following result.
Theorem 1.—For all numbers of qubits n ∈ N, (i) each

n-qubit quantum state ρ can be represented by a probability
function pρ∶Vn → R≥0,

ρ ¼
X

α∈Vn

pρðαÞAα: ð2Þ

(ii) For the state update under Pauli measurements, it holds
that

Πa;sAαΠa;s ¼
X

β∈Vn

qα;aðβ; sÞAβ: ð3Þ

For all a ∈ En, α ∈ Vn, the qα;a∶Vn × Z2 → R≥0 are
probability functions.
(iii) Denote by Pρ;aðsÞ the probability of obtaining

outcome s for a measurement of Ta on the state ρ.
Then, the Born rule Pρ;aðsÞ ¼ TrðΠa;sρÞ takes the form

TrðΠa;sρÞ ¼
X

α∈Vn

pρðαÞQaðsjαÞ; ð4Þ

where QaðsjαÞ is given by

QaðsjαÞ ≔
X

β∈Vn

qα;aðβ; sÞ: ð5Þ

Hence, 0 ≤ QaðsjαÞ ≤ 1 for all a, s, α.

The above theorem describes a hidden variable model
(HVM) [32–36]. For any fixed number of qubits, any
quantum state can be described by a probability function
with finitely many elements. This property distinguishes it
from the HVM of Beltrametti and Bugajski [36], which
also applies to all quantum states but requires an infinite
state space. A further distinguishing property is the
probabilistic state update under a dynamical process: the
Pauli measurement.
Theorem 1 is illustrated in Fig. 1 through the example of

a single qubit and in the SM, Section V, for two qubits.
Because of its capability to describe Pauli measurements,

the above HVM has bearing on a model of universal
quantum computation, namely quantum computation with
magic states (QCM) [3]. QCM is closely related to the circuit
model (see SM, Sec. IV, for background). The difference is
that in QCM the set of operations is restricted to a sequence
of Clifford unitaries interspersed with Pauli measurements.
These operations are applied to an initial “magic” state. The
only property of QCM relevant for the present discussion is
its quantum computational universality [3,27,37].
To apply the above probabilistic representation to QCM,

we need to consider all its operational primitives—the Pauli
measurements, the Clifford unitaries, and the magic states.
Magic states (like all other quantum states) and Pauli
measurements are positively represented by our HVM,
cf. Theorem 1. This leaves the Clifford gates. The easiest
way of dealing with them is to observe that they are
redundant, i.e., no computational power is lost if we consider
sequences of Pauli measurements only. The reason is that the
Clifford unitaries may be propagated past all measurements,

PHYSICAL REVIEW LETTERS 125, 260404 (2020)

260404-2



thereby conjugating the Pauli measurements into (other)
Pauli measurements. After forward propagation, the unitaries
can be dropped since they do not affect the statistics of the
(now earlier) measurements (see, e.g., [10,12]).
With the Pauli measurements as the only essential

dynamical element, QCM matches the setting described
in Theorem 1. This leads to the following result.

Theorem 2.—For any n ∈ N and all n-qubit quantum
states ρ the classical Algorithm 1 for sampling the out-
comes of any sequence of Pauli measurements on ρ agrees
with the predictions of quantum mechanics.

Thus, the HVM of Theorem 1 describes all of universal
quantum computation and hence arbitrarily closely approx-
imates all quantum mechanical dynamics in finite-dimen-
sional Hilbert spaces.
Theorem 2 does not imply that the classical simulation

Algorithm 1 is efficient. Intuition derived from previous
classical simulation algorithms for quantum computation
[9,13,38,39] suggests that it is inefficient. However, at
present we can neither prove the efficiency nor the
inefficiency of this algorithm.
Proofs.—We now turn to the proofs of Theorems 1 and 2.

The proof of Theorem 1 requires a lemma.
Lemma 1.—The set Λn has the following properties.
(1) Λn contains all n-qubit quantum states; i.e., for all

n-qubit density operators ρ it holds that ρ ∈ Λn.
(2) Λn is closed under Pauli measurement, i.e., for all

Πa;s it holds that

X ∈ Λn ∧ TrðΠa;sXÞ > 0 ⇒
Πa;sXΠa;s

TrðΠa;sXÞ
∈ Λn:

Proof of Lemma 1.—All quantum states ρ satisfy the
conditions TrðjσihσjρÞ ≥ 0, for all n-qubit stabilizer states
jσi (as well as all other pure states), and TrðρÞ ¼ 1; hence
all quantum states ρ are in Λn.
Regarding Property 2, we observe that for all stabilizer

states jσi ∈ Sn and all Pauli observables Ta, it holds
that

Πa;sjσihσjΠa;s¼cjσ0ihσ0j; where jσ0i∈Sn; c≥0: ð6Þ

Namely, c ¼ 1 if ð−1ÞsTajσi ¼ jσi, c ¼ 0 if
ð−1ÞsTajσi ¼ −jσi, and c ¼ 1=2 otherwise [27].
Combining Eq. (6) and the definition of Λn,
Eq. (1), TrðjσihσjΠa;sXΠa;sÞ ¼ Tr½ðΠa;sjσihσjΠa;sÞX� ¼
cTrðjσ0ihσ0jXÞ ≥ 0. Therefore, whenever TrðΠa;sXÞ > 0,
the postmeasurement state X0

a;s ≔ Πa;sXΠa;s=TrðΠa;sXÞ
also has the property that

TrðjσihσjX0
a;sÞ≥ 0; ∀ a∈En; ∀ s∈Z2; ∀ jσi∈ Sn:

Furthermore, TrðX0
a;sÞ ¼ 1. Therefore, X0

a;s ∈ Λn.▪
Proof of Theorem 1.—With Property 1 in Lemma 1, any

n-qubit quantum state ρ is in Λn. Hence it can be expressed
as a convex combination of the vertices Aα, as in Eq. (2).
Taking the trace of Eq. (2) yields

P
α pρðαÞ ¼ 1, i.e., pρ is a

probability function. This proves the first statement of
Theorem 1.
With Property 2 of Lemma 1, for all phase point

operators Aα and all projectors Πa;s with TrðΠa;sAαÞ>0,
it holds that Πa;sAαΠa;s=TrðΠa;sAαÞ ∈ Λn. Therefore,

Πa;sAαΠa;s ¼
X

β∈Vn

qα;aðβ; sÞAβ;

with qα;aðβ; sÞ ≥ 0 for all β ∈ Vn, and s ∈ Z2. Now fixing
α, a and adding the corresponding equations for s ¼ 0 and
s ¼ 1, and then taking the trace, we find

X

s∈Z2

X

β∈Vn

qα;aðβ; sÞ ¼ 1: ð7Þ

Hence, qα;a∶An × Z2 → R≥0 is a probability distribution
for all α ∈ Vn, a ∈ En. This demonstrates Eq. (3).
Regarding QaðsjαÞ as defined in Eq. (5), since the

qα;aðβ; sÞ are all positive, it holds that QaðsjαÞ ≥ 0 for
all a, s, α. Furthermore, with Eq. (7) it follows that
Qað0jαÞ þQað1jαÞ ¼ 1 for all a, α, and therefore

0 ≤ QaðsjαÞ ≤ 1; ∀ a; s; α:

Combining Eq. (2) and the already established Eq. (3),

TrðΠa;sρÞ ¼
X

α∈Vn

pρðαÞTrðΠa;sAαΠa;sÞ

¼
X

α∈Vn

pρðαÞ
X

β∈Vn

qα;aðβ; sÞ

¼
X

α∈Vn

pρðαÞQaðsjαÞ:

This proves the formulation Eq. (4) of the Born rule.▪
Proof of Theorem 2.—Consider a Pauli measurement Ta

on input state ρ. Using the classical simulation algorithm,
the conditional probability of obtaining outcome s given
the state α ∈ Vn is given by Eq. (5). Therefore, the
probability of obtaining outcome s given a measurement

Algorithm 1. Classical procedure to simulate a single run of a
given QCM.

1. Sample from the probability distribution pρ. Obtain a phase
space point α0 ∈ Vn.

2. For all Pauli measurements Tat , at ∈ En, from t ¼ 1 to
t ¼ tmax, sample from qα;a¼at to obtain the new phase space
point β ∈ Vn and measurement outcome s. Output s as the
outcome for the measurement of Tat , update the phase space
point αt−1 → αt ¼ β, and increment t → tþ 1.
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of Ta on state ρ as predicted by the classical simulation
algorithm is

PðSimÞ
ρ;a ðsÞ ¼

X

α∈Vn

pρðαÞQaðsjαÞ: ð8Þ

The outcome probability predicted by the Born rule, PðQMÞ
ρ;a ,

is given by Eq. (4).
Comparing Eq. (8) and Eq. (4), we see that the classical

simulation algorithm reproduces the outcome probabilities
predicted by the Born rule for a single Pauli measurement.
Now we turn to the postmeasurement state ρ0. Quantum

mechanics predicts it to be

ρ0ðQMÞ ¼ Πa;sρΠa;s

TrðΠa;sρÞ
:

Here the numerator is

Πa;sρΠa;s ¼
X

α∈Vn

pρðαÞΠa;sAαΠa;s

¼
X

α∈Vn

pρðαÞ
X

β∈Vn

qα;aðβ; sÞAβ;

and so

ρ0ðQMÞ ¼
P

αpρðαÞ
P

βqα;aðβ; sÞAβP
αpρðαÞQaðsjαÞ

: ð9Þ

Using the classical simulation algorithm, the probability
of obtaining outcome s and state β given a measurement
of Ta on state ρ is Pρ;aðβ; sÞ ¼ Pρ;aðβjsÞPρ;aðsÞ. But
Pρ;aðβ;sÞ¼

P
αpρðαÞPaðβ;sjαÞ¼

P
αpρðαÞqα;aðβ;sÞ and

Pρ;aðβjsÞ ¼ pρ0 ðβÞ. Therefore, the postmeasurement state
according to the classical simulation algorithm is

ρ0ðSimÞ ¼
X

β∈Vn

pρ0 ðβÞAβ ¼
X

β∈Vn

Pρ;aðβ; sÞ
Pρ;aðsÞ

Aβ

¼
X

β∈Vn

P
αpρðαÞqα;aðβ; sÞP
αpρðαÞQaðsjαÞ

Aβ: ð10Þ

This agrees with Eq. (9) above. Therefore, the classical
simulation algorithm also reproduces the postmeasurement
state predicted by quantum mechanics for a single Pauli
measurement.
Now let ρðtÞ denote the state before the tth measurement.

Then the above shows that the classical simulation
algorithm correctly reproduces the Born rule probabilities
Pρ;atðstjs1; s2;…; st−1Þ as well as the postmeasurement
state ρðtþ 1Þ. Therefore, by induction the simulation
algorithm correctly reproduces the outcome probabilities
predicted by the Born rule for any sequence of Pauli
measurements.▪
Discussion.—We now return to the questions posed in

the introduction.

(i) Existence of a probability representation. It is stated in
Theorem 2 of [23] that “a quasiprobability representation of
quantum theory must have negativity in either its repre-
sentation of states or measurements (or both).”
This appears to contradict Theorem 1. However, there is

no contradiction here, only a difference in assumptions.
Through the definitions made prior to it, the above quoted
theorem refers to frame representations. This requires, in
particular, that the quasiprobability representation for every
quantum state is unique. Clearly, our probability distribu-
tion p does not satisfy this condition.
(ii) Contextuality. Given the history of the subject

[6–16,18,40–42], an interesting question is whether the
present HVM is contextual or noncontextual. The Kochen-
Specker notion of contextuality does not apply, because the
present value assignments are not deterministic. This leaves
us with Spekkens’ notion [43], [44] to consider. In this
regard, our HVM is preparation contextual and measure-
ment-noncontextual. The former reflects the aforemen-
tioned nonuniqueness of p.
(iii) Negativity vs efficiency of simulation. Negativity in

quasiprobability representations has been identified as a
cause for slowing down the classical simulation of quantum
systems by sampling. A general result has been obtained in
[5] stating that a quantum system described by a quasi-
probality function W with negativity M ¼ kWk1 can be
simulated by sampling at a multiplicative cost that scales
like M2.
There are simulation schemes for QCM on qudits [9], on

rebits [10], and on qubits [12–14], where negativity is the
only source for the computational hardness of classical
simulation. Negativity is therefore singled out as a
precondition for quantum speedup.
We do not contradict the results [9–14] but now find that

they are an artifact of the particular quasiprobability
functions chosen. Our result lies at the opposite end of
the spectrum. There is no negativity but, presumably, still
computational hardness.
The absence of negativity notwithstanding, there also is

continuity with prior works. The probability distribution p
satisfies the four criteria of the Stratonovich-Weyl (SW)
correspondence [45] (also see [46]; see SM, Section I for
details). It is thus very closely related to the original Wigner
function [47] and to previously defined discrete Wigner
functions for finite-dimensional systems. From the SW
perspective, the only condition p doesn’t satisfy is
uniqueness.
Furthermore, the phase point operators identified in

the multiqubit setting of [13] (also see [48]) are special
cases of the phase point operators discussed here
(see SM, Section IV). And thus, the present approach
provides a broader and yet conceptually simpler
framework for the classical simulation of quantum
computation by sampling, subsuming earlier ones as
special cases.
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(iv) The PBR theorem. The hidden variable model
presented here is ψ-epistemic [49]. The PBR theorem
[24] asserts that (with certain assumptions) no ψ-epistemic
model can reproduce the predictions of quantum mechan-
ics. Our result does not contradict the PBR theorem for two
reasons. First, we consider only sequences of Pauli mea-
surements rather than general measurements (this is suffi-
cient for universal quantum computation). Second, our
model does not satisfy the assumption of preparation
independence required for the theorem to hold. That is,
in general, pρ1⊗ρ2 ≠ pρ1 · pρ2 .
The assumption of preparation independence is less

relevant for quantum computation with magic states,
where, in the language of resource theories, the free sector
is formed by stabilizer states and stabilizer operations, not
local states and local operations. Further, the memory lower
bound of Karanjai, Wallman, and Bartlett [16] shows that a
classical simulation algorithm like that of Algorithm 1 is
incompatible with this assumption.
(v) Gleason’s theorem. Gleason’s theorem [50] says that

in Hilbert spaces H of dimension 3 or greater, the only way
to assign probabilities pðhÞ to all subspaces of h ⊂ H,
represented by corresponding projectors Πh, is via pðhÞ ¼
TrðΠhρÞ for some valid density matrix ρ.
That is, the only consistent way to assign probabilities to

measurement outcomes is the Born rule involving density
matrices. Our Theorem 1 does not contradict this; rather it
reproduces the Born rule, cf. Eq. (4).
However, Gleason’s theorem is sometimes interpreted as a

mathematical proof that density operators are the funda-
mental notion of state in quantum mechanics. In short,
density operators are for quantum mechanics, probability
distributions for classical statistical mechanics. Theorem 1
escapes this interpretation. It shows that every quantum state
can be described by a probability distribution, and yet the
Born rule for measurement is reproduced. This is possible
because we have restricted measurement to Pauli observ-
ables. Note though that this restriction does not affect the
universality of quantum computation with magic states!
To summarize, in this Letter we have constructed a

probability function over a finite set capable of positively
representing all quantum states on any number of qubits, as
well as their update under all Pauli measurements, local and
nonlocal. All prior quasiprobability representations
invoked in the discussion of quantum computation with
magic states, such as the Wigner function for qudits [6,9] or
for rebits [10], and the quasiprobability over stabilizer
states [14], require negativity to represent universal quan-
tum computation.
In view of the seeming classicality of the hidden variable

model for universal quantum computation constructed here,
an important open question is this: Where is quantumness
hiding? In this regard, we propose the polytopes Λn and in
particular the algebraic structure of their extremal vertices
as a subject for further study.
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