
PHYSICAL REVIEW A 101, 012350 (2020)

Phase-space-simulation method for quantum computation with magic states on qubits

Robert Raussendorf ,1,2 Juani Bermejo-Vega ,3,* Emily Tyhurst ,4 Cihan Okay ,1,2 and Michael Zurel 1,2

1Department of Physics & Astronomy, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z1
2Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z4

3Dahlem Center for Complex Quantum Systems, Physics Department, Freie Universität Berlin, 14195 Berlin, Germany
4Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7

(Received 21 June 2019; published 31 January 2020)

We propose a method for classical simulation of finite-dimensional quantum systems, based on sampling
from a quasiprobability distribution, i.e., a generalized Wigner function. Our construction applies to all finite
dimensions, with the most interesting case being that of qubits. For multiple qubits, we find that quantum
computation by Clifford gates and Pauli measurements on magic states can be efficiently classically simulated
if the quasiprobability distribution of the magic states is non-negative. This provides the so far missing qubit
counterpart of the corresponding result [V. Veitch et al., New J. Phys. 14, 113011 (2012)] applying only to odd
dimension. Our approach is more general than previous ones based on mixtures of stabilizer states. Namely, all
mixtures of stabilizer states can be efficiently simulated, but for any number of qubits there also exist efficiently
simulable states outside the stabilizer polytope. Further, our simulation method extends to negative quasiproba-
bility distributions, where it provides probability estimation. The simulation cost is then proportional to a robust-
ness measure squared. For all quantum states, this robustness is smaller than or equal to robustness of magic.
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I. INTRODUCTION

How to mark the classical-to-quantum boundary is a ques-
tion that dates back almost to the beginning of quantum the-
ory. Ehrenfest’s theorem [1] provides an early insight, and the
Einstein-Podolsky-Rosen paradox [2] and Schrödinger’s cat
[3] are two early puzzles. The advent of quantum computation
[4–6] added a computational angle: When does it become
hard to simulate a quantum mechanical computing device on
a classical computer? Which quantum mechanical resource
do quantum computers harness to generate a computational
speedup?

One instructive computational model is quantum compu-
tation with magic states (QCM) [7]. In QCM, both “tradi-
tional” indicators of quantumness (developed in the fields of
quantum optics and foundations of quantum mechanics) and a
computational indicator can be applied. From quantum optics
and foundations, the indicators are the negativity of a Wigner
function [8–10] and the breakdown of noncontextual hidden
variable models [11–13]. Computer science is concerned with
the breakdown of efficient classical simulation.

In the particular setting of QCM, an important distinction
arises between the cases of even and odd local Hilbert space
dimension d . If d is odd, then all three of the above indicators
for the classical-to-quantum boundary align [14–16]. This is
a very satisfying situation: the physicist, the philosopher, and
the computer scientist can have compatible notions of what is
“quantum.”

In even local dimension, the situation differs starkly. Non-
contextual hidden variable models for QCM are not viable
regardless of computational power [16], which voids the
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foundational indicator, and furthermore obstructs the view of
contextuality as a computational resource. Also, the multi-
qubit Wigner functions constructed to date do not support
efficient classical simulation of QCM by sampling over phase
space. Thus, the physics and computer-science-based criteria
for classicality differ, which is an unsatisfactory state of affairs
compared to odd d . The purpose of this paper is to align the
perspectives of the physicist and the computer scientist on the
classical-to-quantum transition in QCM on qubits.

To prepare for the subsequent discussion, we provide a
short summary of QCM and the role of the Wigner function
in it. Quantum computation with magic states operates with
a restricted set of instructions, the Clifford gates. These are
unitary operations defined by the property that they map
all Pauli operators onto Pauli operators under conjugation.
Clifford gates are not universal and, in fact, can be efficiently
classically simulated [17]. This operational restriction is com-
pensated for by invoking the “magic” states, which are special
quantum states that cannot be created by Clifford gates and
Pauli measurements. Suitable magic states restore quantum
computational universality; and in fact QCM is a leading
paradigm for fault-tolerant universal quantum computation.
In sum, computational power is transferred from the quantum
gates to the magic states, and one is thus led to ask: Which
quantum properties give the magic states their computational
power?

One such property is, for odd d at least, negativity in
the Wigner function. A quantum speedup can arise only if
the Wigner function of the magic states assumes negative
values. If, to the contrary, the Wigner function is positive, then
the whole quantum computation can be efficiently classically
simulated [14,15]. Further, a positive Wigner function is,
for n � 2 quantum systems, equivalent to the existence of a
noncontextual hidden variable model [16,18]. Both Wigner
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function negativity and contextuality of the magic states are
therefore necessary quantum computational resources.

As we noted, this picture applies only if the local Hilbert
space dimension is odd. This excludes the full multiqubit case,
which arguably is the most important. Approaches to the qubit
case have been made, e.g., through the rebit scenario [19]
and multiqubit settings with operational restrictions [20,21],
or by invoking a Wigner function over Grassmann variables
[22], or multiple Wigner functions at once [23]. Common to
these approaches is that, unlike for odd d [14], they do not
efficiently simulate the evolution under general Clifford gates
and Pauli measurements by sampling, a.k.a. weak simulation
[24–26].

An alternative approach to weak simulation is by defining
a quasiprobability function over stabilizer states [7,27,28],
bypassing Wigner functions. It has the advantage of effi-
ciently simulating all Clifford circuits on positively repre-
sented states. For multiqubit systems, it has so far been un-
known how the stabilizer method relates to Wigner functions,
but we clarify the relation here.

In this paper, we provide the thus far missing phase space
picture for QCM on multiqubit systems. Central to our discus-
sion is a quasiprobability function defined for all local Hilbert
space dimensions d and all numbers of subsystems n. When
applied to odd d , it reproduces the known finite-dimensional
adaptation [29–31] of the original Wigner function [8]; but for
even d , in particular d = 2, it is different. Then this quasiprob-
ability function requires a phase space of increased size, in
accordance with [32]. Even in d = 2, the positivity of this
quasiprobability is preserved under all Pauli measurements.
This property is crucial for the efficient classical simulation
of QCM on positively represented states. Also, this simulation
contains the efficient classical simulation [7] of stabilizer
mixtures as a special case. We thus reproduce the essential
features of the odd-dimensional scenario in d = 2.

Starting from the definition of the quasiprobability func-
tion W , we treat the following subjects: characterization of
phase space for d = 2, preservation of positivity of W un-
der Pauli measurements, covariance of W under all Clifford
unitaries, efficient classical simulation of QCM for W � 0,
relation to the qubit stabilizer formalism, hardness of clas-
sical simulation for W < 0, and a monotone under the free
operations.

In summary, we arrive at a description that resembles
the corresponding scenario in odd local dimension. Namely,
negativity in the quasiprobability distribution W for the initial
magic state is a necessary precondition for quantum speedup.
However, one difference between even and odd d remains. In
odd d , every positive Wigner function is also a noncontextual
hidden variable model. This is not so for even d , due to the
phenomenon of state-independent contextuality among Pauli
observables.

II. RESULTS AND OUTLINE

A. Summary of results

This paper addresses the full n-qubit case of quantum
computation with magic states, from the perspectives of the
classical-to-quantum transition and quantum computational

resources. For the case of local dimension d = 2 we closely
reproduce the relations between Wigner function and effi-
cient classical simulation existing in odd d . Central to our
discussion is a quasiprobability function W defined for all
local Hilbert space dimensions d . It has the following general
properties:

(i) For all n and d , W is Clifford-covariant and positivity-
preserving under Pauli measurements.

(ii) If the local Hilbert space dimension d is even, Wρ is
nonunique for any given quantum state ρ. The set of phase
point operators corresponding to W is overcomplete.

(iii) If d is odd and n � 2, then W reduces to the standard
Wigner function [29,30] for odd finite dimension.

(iv) For all n and d , the stabilizer formalism is contained
as a special case. All stabilizer states can be positively repre-
sented by W and efficiently updated under Clifford operations.

(v) The present description goes beyond the stabilizer
formalism. In particular, for d = 2, for every number n of
qubits there exist nonmixtures of stabilizer states which are
positively represented by W . Furthermore, for any quantum
state ρ, the one-norm of the optimal Wρ is smaller than or
equal to the robustness of magic RS (ρ). (Both robustness
measures are instances of sum negativity [28].)

The following properties of W for special values of n (and
d = 2) are also worth noting. (a) The eight-state model [33]
is a special case of W , namely, for n = 1. (b) For Mermin’s
square [13], the present simulation algorithm saturates the
lower bound [34] on the memory cost of classical simulation.
(c) Up to two copies of magic T and H states are positively
represented by W .

We establish the following main results: (I) The set of
states positively represented by W is closed under Pauli mea-
surement (Theorem 2 in Sec. V). (II) If a quantum state ρ has a
non-negative function Wρ , and Wρ can be efficiently sampled,
then, for every Clifford circuit applied to ρ, the corresponding
measurement statistics can be efficiently sampled (Theorem 3
in Sec. VI). In this sense, W � 0 leads to efficient classical
simulation of the corresponding quantum computation. (III)
For d = 2, n � 2, the n-system phase space has a more com-
plicated structure than in the case of odd d , reflecting the fact
that the phase point operators are dependent. The points in
generalized multiqubit phase space are classified (Theorem
1 in Sec. IV). (IV) There exists a robustness measure R

which bounds the hardness of classical simulation of quantum
computation with magic states, when Wρinit < 0 for the initial
state ρinit. R is less than or equal to the robustness of magic
(Lemma 9), and a monotone under Clifford unitaries and Pauli
measurements (Theorem 4 in Sec. VII).

B. Outline

The remainder of this paper is organized as follows. In
Sec. III we define a quasiprobability function W . We show
that it reduces to Gross’ Wigner function [29] whenever the
local Hilbert space dimension d is odd but, more importantly,
is different in even dimension. Specifically, W represents all
quantum states redundantly for even d , which enables Clifford
covariance and positivity preservation under Pauli measure-
ment. In Sec. IV we analyze the structure of the phase space
on which W lives for the case of multiple qubits. In particular,
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we classify the points of phase space. We also clarify the
relation to the qubit stabilizer states and their mixtures.

In Secs. V and VI we turn to dynamics. In Sec. V we
discuss the update of W under Pauli measurement, and in
Sec. VI the efficient classical simulation of QCM for positive
W .

In Sec. VII we address the case of Wρ < 0. We discuss
hardness of classical simulation, as well as the elements of
a resource theory based on W .

In Sec. VIII we discuss the extent to which the quasiprobil-
ity function W satisfies the Stratonovich-Weyl criteria, and its
relation to hidden variable models. We conclude in Sec. IX.

III. THE QUASIPROBABILITY FUNCTION

In this section we introduce the generalized n-qudit phase
space V , for any local Hilbert space dimension d , and a
quasiprobability distribution W : V −→ R living on it. In
Sec. III A we define the phase point operators corresponding
to W , and in Sec. III B identify a minimal set of them.
Section III C reveals the cohomological underpinning of
our construction, which links the present subject to parity
proofs of quantum contextuality [35] and contextuality in
measurement-based quantum computation [36].

A. Generalized phase space

We choose a phase convention for the Pauli operators,

Ta = eiφ(a)X (aX )Z (aZ ), ∀a = (aX , aZ ) ∈ E := Z2n
d . (1)

Therein, the function φ : E −→ R has to satisfy the constraint
that (Ta)d = I , for all a ∈ E . As a consequence of this condi-
tion, all eigenvalues of the operators Ta are of the form ωk ,
k ∈ N, with ω := exp(2π i/d ).

We now proceed to the definition of the phase point
operators. We consider a subset � of E and a function γ :
� −→ Zd , both subject to additional constraints that will be
specified in Definitions 2–4 below. The pair (�, γ ) specifies a
corresponding phase point operator Aγ

�,

Aγ

� := 1

dn

∑
b∈�

ωγ (b)Tb, (2)

with the constraint that

ωγ (0)T0 = I. (3)

When comparing Eq. (2) to the phase point operators of the
previously discussed qudit [14], rebit [19], and restricted qubit
[20] cases, we note that the overall structure remains the same.
In this case, the sets � are an additional varying parameter,
and the phase space thereby becomes larger.

Based on the phase point operators Aγ

� of Eq. (2), we
introduce the counterpart to the Wigner function that applies
to our setting. The generalized phase space V consists of all
admissible pairs (�, γ ), to be specified below. Any n-system
quantum state ρ can be expanded in terms of a function
Wρ : V −→ R,

ρ =
∑

(�,γ )∈V
Wρ (�, γ )Aγ

�. (4)

The reason for imposing Eq. (3) is that it implies
TrAγ

� = 1, for all (�, γ ) ∈ V . Hence, W defined in Eq. (4) is a
quasiprobability distribution. As we see shortly, it generalizes
the Wigner function [29] for odd-dimensional qudits to qubits.

We note that when d is even, the quasiprobability distribu-
tion Wρ is nonunique because the set of phase point operators
of Eq. (2) is overcomplete.

Definition 1. An n-qudit quantum state ρ is positively rep-
resentable if it can be expanded in the form of Eq. (4), with
Wρ (�, γ ) � 0, for all (�, γ ) ∈ V .

The efficient classical simulation algorithm described in
Sec. VI applies to positively representable quantum states ρ.
The nonuniqueness of Wρ allows for more positively repre-
sentable states than prior quasiprobability representations.

We now turn to the properties of admissible sets � and
functions γ that define points in the phase space V . To
begin, we define a function β which encodes how translation
operators on phase space compose,

TaTb = ωβ(a,b)Ta+b, ∀a, b ∈ E : [Ta, Tb] = 0. (5)

We further define the symplectic product

[a, b] := aX bZ − aZ bX mod d, (6)

and hence [a, b] = 0 ⇐⇒ [Ta, Tb] = 0.
The function β satisfies the relation

β(a, b) + β(a + b, c) − β(b, c) − β(a, b + c) = 0 mod d,

(7)
for a, b, c ∈ E . We state this relation for later reference. It is
a consequence of the associativity of operator multiplication.
Consider the operator product TaTbTc = Ta(TbTc) = (TaTb)Tc,
and expand Ta(TbTc) = ωβ(a,b+c)+β(b,c)Ta+b+c, (TaTb)Tc =
ωβ(a,b)+β(a+b,c)Ta+b+c. Comparing the two equivalent expres-
sions yields Eq. (7).

Then, it follows straightforwardly from the definition
Eq. (5) of β that

β(a, b) = β(b, a), ∀a, b with [a, b] = 0. (8)

We constrain � by the following definitions:
Definition 2. A set � ⊂ E is closed under inference if it

holds that

a, b ∈ � ∧ [a, b] = 0 	⇒ a + b ∈ �. (9)

The motivation for this definition is that if Ta and Tb can
be simultaneously measured, then the value of Ta+b can be
inferred from the measurement outcomes, through relation
(5). A consequence of the closedness under inference is that
0 ∈ � for all closed sets �.

Definition 3. A set � ⊂ E is noncontextual if there exists
a value assignment γ : � −→ Zd that satisfies the condition

γ (a) + γ (b) − γ (a + b) = β(a, b), (10)

for all a, b ∈ �, and [a, b] = 0.
To motivate the nomenclature, if the set � ⊂ E is noncon-

textual per the above definition, then it does not admit a parity-
based contextuality proof [35]. Namely, Eq. (10) represents
the constraints on noncontextual value assignments γ that
result from the operator constraints Eq. (5). If these constraints
can be satisfied, then there is no parity-based contextuality
proof.
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Definition 4. The generalized phase space V consists of all
pairs (�, γ ) such that (i) � is closed under inference, (ii)
� is noncontextual, (iii) γ : � −→ Zd satisfies the relation
Eq. (10), and (iv) Eq. (3) holds.

Thus, for the generalized phase space V , the only sets �

that matter are simultaneously closed and noncontextual. For
short, we call such sets “cnc.”

B. Maximal sets �

The cnc sets � partially specify the points in phase space,
and it is thus desirable to eliminate possible redundancies
among them. It turns out that only the “maximal” sets � need
to be considered for V .

Definition 5. A cnc set � ⊂ E is maximal if there is no
cnc set �̃ ⊂ E such that � � �̃.

We denote by VM the subset of V constructed only from the
maximal cnc sets �. Then any quantum state ρ has expansions
like Eq. (4), but with V replaced by VM . If one of those
expansions is non-negative, then we say that ρ is positively
representable w.r.t. VM .

Lemma 1. For any n and d , a quantum state ρ is positively
representable w.r.t. V if and only if it is positively repre-
sentable w.r.t. VM .

From the perspective of positive representability, we may
therefore shrink V to VM without loss. We make use of this
property when discussing the case of odd d in Sec. IV A
right below, and in the classification of cnc sets � for the
multiqubit case in Sec. IV C. The proof of Lemma 1 is given in
Appendix A.

C. The cohomological viewpoint

The above Definitions 3 and 4 have a cohomological un-
derpinning, which connects the subject of the present paper to
the topological treatment of parity-based contextuality proofs
[35], and of contextuality in measurement-based quantum
computation [36].

The cohomological picture arises as follows. The partial
value assignments γ and the function β are cochains in a chain
complex, with Eqs. (7) and (10) constraining them. Equation
(7) says that β is a special cochain, namely, a cocycle. Now,
the basic reason for why the case of even d is so much more
involved than the case of odd d is that, for even d , the cocycle
β is nontrivial, whereas for odd d it is trivial [35].

Equations (7) and (10) are frequently used in this paper,
for example, in the update rules of the phase point operators
under Pauli measurements (proof of Lemma 5), the closedness
of the generalized phase space V under update by Pauli
measurement (proof of Lemma 7), and covariance of the
quasiprobability function W under Clifford unitaries (proof of
Lemma 10). These are central properties for the phase-space
description of quantum computation with magic states, and
they are all matters of cohomology.

The cohomological formulation is based on a chain com-
plex Cn constructed from the n-qubit Pauli operators Ta. The
operator labels a define the edges of this complex; the faces of
Cn correspond to commuting pairs (a, b) and volumes (a, b, c)
to commuting triples. For details, the interested reader is

referred to Ref. [35]. Here we only state two basic topological
properties of the present scenario.

As already noted, the cochain β defined in Eq. (5) is in fact
a two-cocycle, with the cocycle condition dβ = 0 enforced by
Eq. (7). For any given volume v = (a, b, c), the coboundary
dβ evaluates on v to

dβ(a, b, c) := β(a, b) + β(a + b, c) − β(b, c) − β(a, b + c).
(11)

Thus, Eq. (7) says that dβ(v) = 0, for all volumes v.
Equation (10) in Definition 3 also has a cohomological

interpretation, namely, dγ = β|�×�, with

dγ (a, b) := γ (a) + γ (b) − γ (a + b), (12)

for any face (a, b) spanned by commuting edges a, b ∈ E .
Subsequently, we use evaluations of dβ and dγ , defined

in Eqs. (11) and (12), as a short-hand to express Eqs. (7)
and (10). As outlined above, it is conceptually helpful to
remember that dβ and dγ denote coboundaries, but it is not
required for the technical results presented in this paper.

IV. PROPERTIES OF THE PHASE SPACE V

In this section, we look at the structure of the phase space
V more closely and make connections to previous phase space
formulations. Namely, in Sec. IV A we address the relation-
ship of this phase space to the usual qudit phase space, and in
Sec. IV B we make clear the connections to the previously
addressed rebit case. Further, in Sec. IV C, we classify the
cnc sets �, and for every � describe the sets 	(�) of value
assignments γ . In Sec. IV D we clarify the relation to the
stabilizer formalism.

A. Qudits of odd dimension

This is the only place in the present paper where we con-
sider the case of odd d . The purpose of this section is to show
that if d is odd, then for n � 2 qudits the generalized phase
space V reduces to the standard phase space V = Z2n

d . There
the quasiprobability function W becomes the standard Wigner
function [29] for odd finite-dimensional systems. Hence, the
present quasiprobability function W is a generalization of the
finite odd dimensional Wigner function [29], which in turn is
a descendant of the original Wigner function [8].

If d is odd, then the whole set E is cnc. First, E is closed
under inference by definition. And, second, it is known that
in odd dimension Pauli observables have noncontextual deter-
ministic value assignments [37,20]. These yield the functions
γ , satisfying the condition Eq. (10). E is thus noncontextual.

E is furthermore the single maximal set, and, with
Lemma 1, the only cnc set that needs to be considered for
the phase space. Hence, the phase point operators are

Aγ
E = 1

dn

∑
a∈E

ωγ (a)Ta,

with the functions γ satisfying Eqs. (3) and (10). The for-
mer condition ensures that the identity operator appears with
weight 1/dn in the expansion (real and positive). If n � 2, the
latter condition has d2n solutions for the functions γ if d is
odd [18]. For a suitable choice of φ in Eq. (1), it holds that
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β ≡ 0 (odd d only). The solutions for γ then form a vector
space

V = Z2n
d (for odd d).

We note that the case of a single qudit, n = 1, is an exception
to the above behavior. In this case, the set V has greater
cardinality than Z2

d [18].

B. Qubits and rebits

The remainder of this paper is about local Hilbert space
dimension d = 2. This means mostly qubits, but we will
occasionally also consider systems of rebits. The reason is
that the major complication of the d = 2 case stems from
Mermin’s square and star [13]—two strikingly simple con-
textuality proofs. Those settings embed most efficiently in
rebits rather than qubits, which warrants the inclusion of rebits
here.

We remark that the present discussion of rebits is al-
most identical to the discussion of qubits, but very dif-
ferent from the earlier discussion of rebits in [19]. In the
latter, the physically measurable observables were restricted
from real Pauli operators to CSS-type Pauli operators, and
the real Clifford unitaries to CSS-ness preserving Clifford
unitaries. No such restrictions are imposed here. If the
restriction to CSS-ness preserving operations is imposed,
then Mermin’s square and star, along with all other state-
independent contextuality proofs based on Pauli observables,
are effectively excised [19]. Here we retain those contextu-
ality proofs, and consequently have to adjust to their pres-
ence. Notably, these contextuality proofs constrain quasiprob-
ability distributions that preserve positivity under Pauli
measurement.

We start the exploration of the d = 2 case with two exam-
ples that illustrate the concept of generalized phases space V .
The second example also illustrates the differences between
contextuality, negative quasiprobability, and quantum compu-
tational power for two-level systems.

Example 1: Eight-state model. It is known that every one-
qubit quantum state can be positively represented by the so-
called eight-state model [33], which consists of two standard
one-qubit Wigner functions tagged together. The eight-state
model is an instance of the state expansion Eq. (4), namely,
for d = 2, n = 1, and it contains only one set �,

�0 = {0, x, y, z},
with T0 = I , Tx = X , Ty = Y and Tz = Z . It is easily checked
that �0 is noncontextual and closed under inference (no
inference possible). The value assignments γ are constrained
by Eq. (3), hence γ (0) = 0, and no constraints arise from
Eq. (7) due to the lack of nontrivial commuting elements in
�0. Thus, γ (x), γ (y) and γ (z) can be freely chosen. There are
eight resulting functions, and they define the eight states of
the model.

All one-qubit quantum states can be positively represented
by this model, which is strictly more than all mixtures of one-
qubit stabilizer states.

Example 2: Mermin’s square. Mermin’s square is at the
very root of the complications that arise for Wigner functions
in even dimension. In particular, no n-qubit Wigner function

(c)(b)(a)

XX

XZ

ZZ

ZX

Z1Z2

X1 X2

-YY

XX

XZ

ZZ

ZX

Z1Z2

X1 X2

-YY

XX

XZ

ZZ

ZX

Z1Z2

X1 X2

-YY

FIG. 1. Three types of cnc sets � for Mermin’s square. (a) Union
of two isotropic subspaces intersecting in one element, (b) isotropic
subspace, (c) triple of anticommuting elements.

for which the corresponding phase point operators form an
operator basis can preserve positivity under all Pauli measure-
ments [20].

All observables appearing in Mermin’s star are real and
can thus be embedded in two rebits. Our formalism is easily
adaptable to this slightly simpler scenario. Figure 1 shows
three distinct types of cnc sets �. Type (a) is the union of
two nontrivially intersecting isotropic subspaces (9 sets), type
(b) is isotropic subspaces (6 sets), and type (c) is triples of
anticommuting elements, i.e., one from each row and column
of the square (6 sets). For each cnc set � of type (a), (b), and
(c) of Fig. 1, the constraint Eq. (10) allows for 23, 22, and 23

functions γ , respectively. The number of phase space points
of each type therefore is 72, 24, 48.

We make the following numerical observations about the
two-rebit case: (i) Random sampling suggests that all 2-rebit
states are positively representable; see Table III. (ii) In Fig. 2
the region of positively representable density matrices of the
form

ρ(x, y) = 1
4 I12 + x(X1X2 + Z1Z2 − Y1Y2) + y(Z1 + Z2), (13)

for x, y ∈ R, is displayed for three different methods: the sta-
bilizer method [27], the hyperoctrahedral method [38], and the
present phase space method. We find that all quantum states
in the plane spanned by the parameters x, y are positively
represented by the present phase space method, and this is not
the case for the stabilizer and hyperoctahedral methods.

Example 3: Two qubits. Numerical analysis shows that two
copies of the state

|H (φ)〉 := (|0〉 + e−iφ |1〉)/
√

2 (14)

can be positively represented, for all angles φ.

C. Classification of multiqubit phase space points

Denote by 	(�) the set of functions γ : � −→ Z2 that
satisfy the constraints Eqs. (3) and (10). Then the following
statement holds.

Lemma 2. For all sets � of Def. 4, 	(�) is the coset of a
vector space U (�).

Proof of Lemma 2. Write γ = γ0 + η, where γ0 ∈ 	(�)
is some reference function. Then the only condition on the
functions η ∈ U (�) is dη = 0. Thus, if η, η′ ∈ U (�) then
cη + c′η′ ∈ U (�), for all c, c′ ∈ Z2. �

Lemma 2 reproduces a familiar feature. In infinite and
finite odd dimension, the whole phase space is an orbit under
the vector space of translations. There is an origin 0 of phase
space, and all other phase space points are obtained from it by
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(a)

(b)

(c)

FIG. 2. Two-dimensional cross section of the two-qubit state
space, as parameterized in Eq. (13). The shaded regions indicate
the positively representable states by various methods; (a) mixtures
of stabilizer states, (b) hyperoctahedral states [38], and (c) states
positively represented by the present phase space method.

translation. In our present case of d = 2, the phase space V
splinters into many fragments, each of which corresponds to a
vector space U attached to a cnc set �.

At this point, one question about the structure of V remains:
Can the cnc sets � be classified? It is resolved by Lemma 3
and Theorem 1 below.

Lemma 3. For n qubits, consider an isotropic subspace Ĩ ⊂
E of dimension n − m, with m � n, and ξ � 2m + 1 elements
ak ∈ E that pairwise anticommute but all commute with Ĩ .
Denote Ik := 〈ak, Ĩ〉 for k = 1, . . . , ξ . For any number n of
qubits, the sets

� =
ξ⋃

k=1

Ik (15)

m = 0 m = 1 m = 2

FIG. 3. Commutativity graph representation for the cosets of
Eq. (15) sets. Elements pairwise commute within each vertex and
elements in adjacent vertices pairwise commute. Elements in nonad-
jacent vertices anticommute.

C4 P4 K1 P3

FIG. 4. Forbidden induced subgraphs of the commutativity
graph, resulting from Mermin’s square (also see Ref. [39]).

are noncontextual and closed under inference. Figure 3 shows
a visual representation of the commutativity graph for these
sets.

Proof of Lemma 3. Existence. The sets � of Eq. (15) exist
for all m, n. To see this, consider the m-qubit Jordan-Wigner
transforms of the Majorana fermion operators acting on qubits
1 to m,

C2 j−1 = I1.. j−1XjZ j+1Zj+2 · · · Zm−1Zm,
(16)

C2 j = I1.. j−1YjZ j+1Zj+2 · · · Zm−1Zm,

for j = 1, . . . , m, and, if m > 0, the further observable

C2m+1 = Z1Z2 · · · Zm−1Zm. (17)

Further, be Ĩ the isotropic subspace corresponding to a sta-
bilizer state supported on the n − m qubits numbered m +
1, . . . , n. Define ak via Ck = Tak as in Eqs. (16) and (17), for
all k = 1, . . . , 2m + 1. These ak and a ∈ Ĩ have the commu-
tation relations required.

Closedness. Consider a pair c, d ∈ � such that [c, d] = 0.
There are two cases. (i) c, d ∈ Ik , for some k. Then c + d ∈ Ik ,
hence c + d ∈ �.

(ii) c ∈ Ik and d ∈ Il , k �= l . We may write c = ν x + g, d =
μ y + g′, for some ν, μ ∈ Z2 and g, g′ ∈ Ĩ . The commutation
relation [c, d] = 0 then implies that νμ = 0, hence either
ν = 0 or μ = 0. Wlog. assume that ν = 0. Then c ∈ Ĩ , hence
c, d ∈ Il . Thus, c + d ∈ Il ⊂ �.

In both cases, c, d ∈ � and [c, d] = 0 implies that c + d ∈
�. Hence � is closed under inference.

Noncontextuality. There exists a function γ |Ĩ : Ĩ −→ Z2

that satisfies Eq. (10) on Ĩ . We now extend this function to �

as follows. The values γ (ak ), for k = 1, . . . , ξ can be freely
chosen, and for all a ∈ Ĩ and all k, γ (ak + a) := γ (ak ) +
γ (a) + β(ak, a). This fully defines γ : � −→ Z2. All com-
muting triples c, d, c + d lie within one of the isotropic spaces
Ik forming �, and dγ (a, b) = β(a, b) thus holds.

This establishes that the sets � of Eq. (15) exist for the
maximum value of ξ , ξ = 2m + 1. One may always choose ξ

smaller, which neither affects closedness nor noncontextual-
ity. �

Theorem 1. All maximal cnc sets � are of the form
Eq. (15), with ξ = 2m + 1 and 1 � m � n.

Proof of Theorem 1. Let � ⊂ E be closed under infer-
ence and noncontextual. We can partition the elements of
� into two subsets, � = {q1, . . . , qμ|g1, . . . , gν}, where Ĩ =
{g1, . . . , gν} are the elements of � which commute with the
whole set. Ĩ is an isotropic subspace since if two elements, a
and b, commute with �, then clearly their sum, a + b, also
commutes with �, and Ĩ is isotropic by definition.

If all elements of � pairwise commute then � = Ĩ is an
isotropic subspace. Isotropic subspaces are not maximal cnc

012350-6



PHASE-SPACE-SIMULATION METHOD FOR QUANTUM … PHYSICAL REVIEW A 101, 012350 (2020)

sets because they are always contained in Eq. (15) sets with
parameter m = 1. If � is not an isotropic, subspace then it can
be written compactly as

� =
ξ⋃

k=1

〈pk, Ĩ〉, (18)

where ξ � 2, the cosets p1 + Ĩ, . . . , pξ + Ĩ are distinct and
q1, . . . , qμ are in the cosets p1 + Ĩ, . . . , pξ + Ĩ . Note that in
this form, there can be no element p j which commutes with all
of p1, . . . , pξ because Ĩ is defined to contain all such elements.
Now we consider the possible commutation relations that
p1, . . . , pξ can have if � is noncontextual.

The Mermin square is generated by products of commuting
pairs of the two-qubit Pauli operators {X1, X2, Z1, Z2}. This
is a contextual set. Therefore, any set which is closed under
inference and contains four elements p1, p2, p3, p4 with the
commutation relations like those of {X1, X2, Z1, Z2}:

[p1, p2] = [p1, p4] = [p2, p3] = [p3, p4] = 0,

[p1, p3] = [p2, p4] = 1 (19)

will necessarily contain the full Mermin square and therefore
be contextual.

Another sufficient condition for a closed under inference
set to be contextual is that it contains four elements with the
commutation relations

[p1, p2] = [p2, p3] = [p3, p4] = 0,

[p1, p3] = [p1, p4] = [p2, p4] = 1. (20)

The reason is that since the set is closed under inference, it will
necessarily contain the elements p1 + p2 and p3 + p4, and
the elements p1, p1 + p2, p3 + p4, p4 have the commutation
relations of Eq. (19). Thus, it must contain a Mermin square.

A similar argument shows that another sufficient condition
for a closed under inference set to be contextual is that it
contains four elements with the commutation relations

[p1, p2] = [p2, p3] = 0,

[p1, p3] = [p1, p4] = [p2, p4] = [p3, p4] = 1. (21)

In this case, since the set is closed under inference, it must also
contain the elements p1 + p2 and p2 + p3 and the elements
p1 + p2, p2, p2 + p3, p4 have the commutation relations of
Eq. (19).

To determine the possible commutation relations of the
elements p1, . . . , pξ , we will look at their commutativity
graph G. That is the undirected graph with a vertex for each
of p1, . . . , pξ and an edge connecting each pair of commuting
vertices. Since � is noncontextual, the commutation relations
of Eq. (19), Eq. (20), and Eq. (21) provide restrictions on the
possible commutation relations of the elements p1, . . . , pξ of
�. In terms of the commutativity graph G, these are forbidden
induced subgraphs.1

1An induced subgraph of a graph is the graph obtained by taking
a subset of the vertices of the original graph and all of the edges
connecting pairs of vertices in the subset.

The restriction of Eq. (19) says that G cannot have a
four-vertex chordless cycle (C4) as an induced subgraph and
the restriction from Eq. (20) says that G cannot have a four-
vertex path (P4) as an induced subgraph. These two forbidden
induced subgraphs characterize the trivially perfect graphs
[40]; i.e., G must be a trivially perfect graph.

Connected trivially perfect graphs have the the property
that they contain a universal vertex [40].2 If the commutativity
graph G were connected then there would be an element p j

which commutes with all other elements of {p1, . . . , pξ }. This
is also forbidden. Therefore, the graph G is disconnected.

Given that G is disconnected, Eq. (21) provides another re-
striction, namely, that each connected component of G cannot
have a three-vertex path (P3) as an induced subgraph; i.e., each
connected component of G is a clique. The three forbidden
subgraphs are displayed graphically in Fig. 4.

This means we can partition the elements {p1, . . . , pξ } into
disjoint subsets

{p1, . . . , pξ } = {p1,1, p1,2, . . . , p1,ξ1}
∪ {p2,1, p2,2, . . . , p2,ξ2}
∪ · · · ∪ {pπ,1, pπ,2, . . . , pπ,ξπ

} (22)

where two elements commute if and only if they are in
the same subset in the partition. Since the set {p1, . . . , pξ }
is closed under inference, each subset in the partition
must be closed under inference. Now suppose a subset in
the partition contained at least two elements. Then since the
subset is closed under inference it must also contain their sum.
But each of the two elements anticommutes with the elements
of all other subsets in the partition, so their sum must commute
with the elements of all other subsets in the partition. This is a
contradiction. Therefore, each subset in the partition contains
a single element. Thus, the elements {p1, . . . , pξ } of Eq. (18)
pairwise anticommute.

Maximal cnc sets are sets of the form Eq. (18) for which ξ

is maximal for a given isotropic subspace Ĩ . If the isotropic
subspace Ĩ has dimension n − m where n is the number
of qubits and 1 � m � n, then the pairwise anticommuting
elements pk which complete the set are elements of the
symplectic complement Ĩ⊥. This is a m dimensional sym-
plectic subspace, therefore the maximal value of ξ is the
largest number of pairwise anticommuting Pauli operators on
m qubits. The largest sets of pairwise anticommuting Pauli
operators on m qubits have 2m + 1 elements. This can be seen
as follows. Consider the elements ak ∈ E given by Tak = Ck ,
with Ck defined in Eq. (16). The set {ak| 1 � k � 2m} consists
of pairwise anticommuting elements. There is an element c,
with Tc = C2m+1 [cf. Eq. (17)] that anticommutes with each
one of the elements in this set. It is the only element in E to
do so, since the set of equations

[c, ak] = 1 1 � k � 2m (23)

has a unique solution. Therefore together with this element we
can construct a set of size 2m + 1.

2A universal vertex is a vertex that is adjacent to every other vertex
in the graph.

012350-7



ROBERT RAUSSENDORF et al. PHYSICAL REVIEW A 101, 012350 (2020)

We would like to show any other set of pairwise anticom-
muting elements whose size is 2m can be mapped bijectively
to the set we constructed. Suppose {ãk| 1 � k � 2m} is such
a set. By Witt’s lemma [41, §20] the function that sends
ak to ãk extends to a linear map f : E → E that satisfies
[ f (v), f (w)] = [v,w] for all v,w ∈ E (symplectic transfor-
mation). Therefore there is a unique element that anticom-
mutes with all the ãk , and it is given by f (c). In particular,
2m + 1 is the maximal number.

To complete the proof we must show that maximal sets of
pairwise anticommuting elements on m qubits with size less
than 2m + 1 do not lead to maximal cnc sets. To see this note
that by Witt’s lemma, for any maximal anticommuting set of
size 2m′ + 1 (m′ < m), there is a bijection f : E → E which
maps the set to one of the form Eqs. (16) and (17). Therefore,
we can find m − m′ independent elements which commute
with the set. For example, if g1, g2, . . . , gm−m′ are the vectors
corresponding to Pauli operators Xm′+1, Xm′+2, . . . , Xm, then
we could take f −1(g1), f −1(g2), . . . , f −1(gm−m′ ). Therefore,
the n − m dimensional isotropic subspace can be extended to
one with dimension n − m′.

This completes the proof. Therefore, all maximal cnc sets
have the form Eq. (15), with ξ = 2m + 1. �

A result equivalent to the characterization of Eq. (22) is
given in Theorem 3 of Ref. [39].

Tensor products of phase point operators are not typically
phase point operators. Consider, for example, two phase point
operators with m = 2 and n � 2. Their tensor product does
not appear in the classification provided by Theorem 1, as the
commutativity graph shows. Physically, such tensor products
are not closed under inference, violating Definition 4. Upon
closure, they cease to be noncontextual as they then contain a
Mermin square. Hence the closures also violate Definition 4.

But there is an exception. If one of the two phase point
operators in the tensor product corresponds to an isotropic
subspace, i.e., has m = 0, then the tensor product is a valid
phase point operator. See Appendix D for details.

D. Relation to the stabilizer formalism

The purpose of this section is to describe the relation
between positive representability by the quasiprobability dis-
tribution W and qubit stabilizer states. We demonstrate that,
for all n, the set of positively W -representable states contains
the stabilizer mixtures as a strict subset. This is the content of
Lemma 4 below. The lemma is based on two examples.

Example 4. Be |stab〉 an n-qubit stabilizer state, with
isotropic subspace Ĩ ⊂ E corresponding to its stabilizer. Then
it is easily verified that Ĩ is noncontextual and closed under
inference. Namely, Ĩ is of form Eq. (15), with m = 0, ξ = 1.

The next example generalizes Example 1 to n-qubit states.
Example 5. Every n-qubit state of the form 
 = ρ1 ⊗

|stab〉〈stab|2,...,n, with ρ a general one-qubit state and |stab〉 an
n − 1-qubit pure stabilizer state, is positively representable.

To prove this statement, for any number n of qubits, con-
sider an isotropic subspace Ĩ ⊂ E of rank n − 1 representing
the stabilizer state |stab〉2,...,n, and three elements x, y, z ∈ E ,
such that Tx = X1, Ty = Y1, and Tz = Z1. Define the three

isotropic subspaces Ix, Iy, Iz ⊂ E ,

Ix = 〈x, Ĩ〉, Iy = 〈y, Ĩ〉, Iz = 〈z, Ĩ〉,
and �xyz := Ix ∪ Iy ∪ Iz. �xyz is of form Eq. (15), with m = 1,
ξ = 3 and n � 2, hence cnc by Lemma 3.

We now apply this result to the state 
 = ρ1 ⊗
|stab〉〈stab|2,...,n above. We can write the constituents as
ρ = ∑

γ0
Wρ (�0, γ0)Aγ0

�0
, with Wρ � 0 (cf. Example 1), and

|stab〉〈stab| = Aγ̃

Ĩ
(cf. Example 2). We observe that

Aγ0
�0

⊗ Aγ̃

Ĩ
= Aγ

�xyz
,

with γ := γ0(a|1) + γ̃ (a|2,...,n) mod 2. To see this, recall that
�0 = {0, x, y, x}, and note that the set �xyz can also be written
as �xyz = Ĩ ∪ (Ĩ + x) ∪ (Ĩ + y) ∪ (Ĩ + z), where the coset Ĩ +
x := {a + x, ∀a ∈ Ĩ}, etc. Thus, 
 = ∑

γ0
Wρ (�0, γ0)Aγ

�xyz
.

Since Wρ � 0 by Example 1, the states 
 are all positively
representable. Yet not all these states are mixtures of stabilizer
states. Stabilizer mixedness is preserved under partial trace.
Now assume that 
 is a stabilizer mixture for all ρ. Then
Tr2..n
 = ρ1 is also a stabilizer mixture. Contradiction.

We cast the combined conclusion of Examples 4 and 5 as a
Lemma.

Lemma 4. For all n ∈ N, all mixtures of n-qubit stabilizer
states are positively representable, and furthermore there exist
positively representable states that are not mixtures of stabi-
lizer states.

V. QUANTUM MECHANICAL RULES FOR STATE
UPDATE UNDER MEASUREMENT

In the previous sections we have analyzed the generalized
phase space V on which the quasiprobability function W is
defined. We now turn to dynamics.

For our setting of QCM this concerns evolution under the
free operations, i.e., the Clifford unitaries and Pauli mea-
surements. As already noted in Refs. [19,20], the situation
simplifies even further. If the goal is to sample from the joint
probability distribution of measurement outcomes—which is
the case in quantum computation—then only the update under
Pauli measurements needs to be considered.

The Clifford unitaries can be propagated forward in time,
thereby conjugating the Pauli measurements into other such
measurements, past the final measurement and then discarded.
(This redundancy notwithstanding, we will visit the update
of W under Clifford unitaries in Sec. VII C, where we prove
covariance.) The main results of this section are Theorem 2
and Lemma 5.

Theorem 2. For any n ∈ N, the set Pn of positively rep-
resentable n-qubit quantum states is closed under Pauli mea-
surement.

To describe the dynamics under measurement, we need to
set up some further notation. For every set � we introduce the
derived set � × a. Denoting Comm(a) := {b ∈ E |[a, b] = 0}
and �a := � ∩ Comm(a),

� × a := �a ∪ {a + b| b ∈ �a}, ∀a �∈ �. (24)

Likewise, we define an update on functions γ invoking the
measurement outcome sa of an observable Ta, namely, (·) ×
sa : (γ : � −→ Z2) �→ (γ × sa : � × a −→ Z2). We define
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FIG. 5. Update of a cnc set � in Mermin’s square, under two
Pauli measurements. (a) The measured observable X2 is such that
a(X2) ∈ �; hence the update proceeds by Eq. (26a). (b) The mea-
sured observable X1 is such that a(X1) �∈ �; hence the update pro-
ceeds by Eq. (26b).

this update only for (�, γ ) ∈ V , and only for a �∈ �.3 The
updated function γ × sa : � × a −→ Z2 is given by

γ × sa(b) := γ (b), ∀b ∈ �a, (25a)

γ × sa(b) := γ (a + b) + sa + β(a, b), ∀a + b ∈ �a.

(25b)

The rules of Eq. (25) are used to formulate the update rule
for phase point operators of Eq. (2) under Pauli measurement.

Remark. Update rules similar to Eq. (25) have been used
previously [42] to construct a ψ-epistemic model of the
multiqubit stabilizer formalism. Those rules update the value
assignments in the same way but are applied under different
conditions. Specifically, the update in Ref. [42] does not refer
to general sets � satisfying the conditions of Def 4.

Lemma 5. Denote the projectors Pa(sa) := (I +
(−1)sa Ta)/2, and let Aγ

� a phase point operator defined
through Eq. (2), with (�, γ ) ∈ V satisfying the conditions of
Definition 4. Then the effect of a measurement of the Pauli
observable Ta with outcome sa on Aγ

� is

Pa(sa)Aγ

�Pa(sa) = δsa,γ (a)
Aγ

� + Aγ+[a,·]
�

2
, if a ∈ �, (26a)

Pa(sa)Aγ

�Pa(sa) = 1

2
Aγ×sa

�×a , if a �∈ �. (26b)

Example 2, continued. Equation (26) entails the update of
both the sets � and the functions γ . Here we consider only
the former. Figure 5 displays the update of the set � shown
in Fig. 1(a), under the measurement of (a) the observable X2,
with a(X2) ∈ �, and (b) the observable X1, with a(X1) �∈ �.

3The definitions of � × a and γ × sa can without modification be
extended to a ∈ �. However, in that case the function values γ ×
sa(b) can be determined through both Eqs. (25a) and (25b), and we
need to check consistency. These inferences are indeed consistent, as
a consequence of Eq. (10). Since we do not need the case of a ∈ �

subsequently, we skip the details of the argument.

In preparation for the proof of Lemma 5 it is useful to state
two relations of the function β for d = 2. With the definition
Eq. (5) of β and Eq. (3), the operator identities TaTa = I and
TbI = Tb imply that

β(a, a) = β(a, 0) = γ (0), ∀a ∈ E . (27)

Furthermore, evaluating dβ(a, a, 0) = 0 (see Eqs. (7) and
(11)), and using Eq. (27) yields

β(a, b) = β(a, a + b), ∀a, b. (28)

To prove Lemma 5 we also need the following result.
Lemma 6. If � ⊂ E is noncontextual and closed under

inference, then so is �a, for all a ∈ E .
Proof of Lemma 6. First consider closure. Assume that

c, d ∈ �a and [c, d] = 0. Then c, d ∈ �, and c + d ∈ �,
since � is closed by assumption. Further, [c, a] = [d, a] = 0
implies [c + d, a] = 0, and hence c + d ∈ �a. �a is thus
closed.

Now consider noncontextuality. Since � is noncontextual,
there exists a function γ such that dγ = β on �. Since �a is
closed, β can be properly restricted to C(�a), and so can γ .
Hence, dγ |C(�a ) = β|C(�a ). Thus, �a is noncontextual. �

Proof of Lemma 5. Under the measurement of Ta with
outcome sa ∈ Z2 we have

I + (−1)sa Ta

2
Aγ

�

I + (−1)sa Ta

2

= I + (−1)sa Ta

2

1

2n

∑
b∈�a

(−1)γ (b)Tb

= 1

2 × 2n

∑
b∈�a

(−1)γ (b)Tb + (−1)sa

2 × 2n

∑
b∈�a

(−1)γ (b)TaTb. (29)

From hereon we need to distinguish two cases, a ∈ � and
a �∈ �.

Case I: a ∈ �. Focusing on the second term in the expan-
sion Eq. (29),

(−1)sa
∑
b∈�a

(−1)γ (b)TaTb = (−1)sa
∑
b∈�a

(−1)γ (b)+β(a,b)Ta+b

= (−1)sa+γ (a)
∑
b∈�a

(−1)γ (a+b)Ta+b

= (−1)sa+γ (a)
∑

a+b∈�a

(−1)γ (a+b)Ta+b

= (−1)sa+γ (a)
∑
b∈�a

(−1)γ (b)Tb.

Therein, in the first line we have used Eq. (5), in the second
line Eq. (10), in the third line the completeness of �a under
inference (Lemma 6), and the fourth line is just a relabeling of
the elements in �a. Inserting this result in the above expansion
Eq. (29), we find

Pa(sa)Aγ

�Pa(sa) = δsa,γ (a)
1

2n

∑
b∈�a

(−1)γ (b)Tb, (30)

and Eq. (26a) follows.
Case II: a �∈ �. Substituting b −→ a + b in Eq. (25b) gives

γ × sa(a + b) = γ (b) + sa + β(a, a + b), for b ∈ �a. With
Eq. (28) we obtain

γ × sa(a + b) = γ (b) + sa + β(a, b), ∀b ∈ �a. (31)
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With this, we now look at the second term in the expansion
Eq. (29),

(−1)sa
∑
b∈�a

(−1)γ (b)TaTb = (−1)sa
∑
b∈�a

(−1)γ (b)+β(a,b)Ta+b

=
∑
b∈�a

(−1)γ×sa (a+b)Ta+b.

The first line above follows with Eq. (5), and the second with
Eq. (31).

Considering the first term in the expansion Eq. (29), with
Eq. (25a) we have

∑
b∈�a

(−1)γ (b)Tb =
∑
b∈�a

(−1)γ×sa (b)Tb.

Inserting the above expressions for the two terms in Eq. (29),
and using the definition Eq. (24) of � × a, we obtain
Eq. (26b). �

We have so far shown how the phase point operators can
be updated under measurement once. We still need to show
that this update can be iterated. This requires that the phase
point operators appearing on the r.h.s. of Eq. (26) satisfy the
consistency constraints of Definition 4.

Lemma 7. If (�, γ ) ∈ V then (�, γ + [a, ·]) ∈ V , for all
a ∈ �, and (� × a, γ × sa) ∈ V , for all a �∈ � and sa ∈ Z2.

The proof of Lemma 7 is given in Appendix B.
Proof of Theorem 2. Consider a state ρ ∈ Pn, and a mea-

surement of the Pauli observable Ta on it. Assume that the
measurement outcome sa can occur, pa(sa) := Tr(Pa(sa)ρ) >

0. We have to show that under these conditions, the postmea-
surement state

ρ ′ = Pa(sa)ρPa(sa)

pa(sa)

is also contained in the set Pn.
Denote δa∈� := 1 − δa∈�. Then, with Lemma 5 and the

state expansion Eq. (4) of ρ, we have

ρ ′ =
∑

(�,γ )∈V

Wρ (�, γ )

pa(sa)

(
δa∈�δsa,γ (a)

Aγ

� + Aγ+[a,·]
�

2

+ 1

2
δa∈�Aγ×sa

�×a

)
. (32)

Thus, ρ ′ can be represented by a quasiprobability distribution
Wρ ′ with elements

Wρ ′ (�′, γ ′) =
∑

(�,γ )∈V

Wρ (�, γ )

2pa(sa)

[
δa∈�δsa,γ (a)

(
δ(�′,γ ′ ),(�,γ )

+ δ(�′,γ ′ ),(�,γ+[a,·])
) + δa∈�δ(�′,γ ′ ),(�×a,γ×sa )

]
.

(33)

TABLE I. Classical simulation algorithm for sampling from the
joint probability distribution of a sequence of Pauli measurements on
a positively represented initial quantum state.

1. Draw a sample (�, γ ) ∈ V according to the probability
distribution Wρ representing the initial quantum state ρ.

2. For the observables Ta1 , Ta2 , . . . , TaN measured in this sequence,
repeat the following steps.
For the ith measurement, set a := ai.
If a ∈ � then � is unchanged. Output the value sa = γ (a).
Flip a coin.

if “heads” then γ −→ γ ,

if “tails” then γ −→ γ + [a, ·].
If a �∈ � then � −→ � × a. Flip a coin.

if “heads” then sa = 0,

if “tails” then sa = 1.

Output this value sa. Update γ −→ γ × sa, through Eq. (25).

The Wρ ′ (�′, γ ′) are thus linear combinations of Wρ (�, γ )
with non-negative coefficients [0 or 1/2pa(sa)]. Since the
Wρ (�, γ ) are non-negative by assumption, it follows that
Wρ ′ (�′, γ ′) � 0, for all (�′, γ ′) ∈ V . �

VI. CLASSICAL SIMULATION FOR Wρ � 0

A. Simulation algorithm

We now turn to the question of how hard it is to classi-
cally simulate the outcome statistics for a sequence of Pauli
measurements on an initial quantum state. In this regard, we
show that if the initial quantum state is positively represented
and the corresponding probability distribution W can be effi-
ciently sampled from, then the statistics of the measurement
outcomes can be efficiently simulated.

The classical simulation procedure in Table I describes
weak simulation [24,25]; i.e., it outputs one sample from the
joint probability distribution p(sa1 , sa2 , . . . , saN ) of outcomes
corresponding to a sequence of measurements of Pauli opera-
tors Ta1 , Ta2 , . . . , TaN (Ta1 is measured first, TaN last). If more
than one sample are desired, the procedure is just repeated.
We note that the measurement can be adaptive; i.e., it is not
necessary for the simulation algorithm that a measurement
sequence is committed to at the beginning. As a special
case of this, the measured observables may depend on earlier
measurement outcomes.

We have the following result.
Theorem 3. If for an initial quantum state ρ it holds that

Wρ � 0 and furthermore Wρ can be efficiently sampled from,
then the output distribution of all sequences of Pauli measure-
ments, possibly interspersed with Clifford gates, on ρ can be
classically efficiently sampled from.

As a first application of Theorem 3, we return to
Example 2, Mermin’s square.

Example 2 continued. How much memory capacity
is needed to classically simulate measurements of the
observables in Mermin’s square? We first turn to the
state-independent case, which was previously discussed in
Ref. [34]. The task is to devise a classical algorithm that
outputs an outcome sequence for any given sequence of
Pauli measurements, which can occur according to quantum

012350-10



PHASE-SPACE-SIMULATION METHOD FOR QUANTUM … PHYSICAL REVIEW A 101, 012350 (2020)

TABLE II. Number of points in phase space as a function of {m}.

m 0 1 {1, 2}
2 rebits 24 72 120
2 qubits 60 240 432

mechanics. The measurement sequence can be of any length,
and the measurements therein may be commuting or anticom-
muting. In Ref. [34], a lower bound on the memory cost of any
such simulation was established, log2 24 bits; and a specific
model was constructed that attains it.

The classical simulation algorithm of Table I also saturates
this limit. To show this, we use as cnc sets � the six maximal
isotropic subspaces of two rebits; cf. Fig. 1(b). This set of sets
� is closed under update by Pauli measurement, as described
by Eq. (26). For each such set �, each value assignment γ is
specified by two evaluations [the other evaluations then follow
via Eq. (10)]. There are thus four functions γ for each cnc set
�, hence 24 combinations in total, which is the same as in
Ref. [34].

We now turn to the state-dependent version of the problem.
How much memory is needed to sample from the correct
outcome statistics for arbitrary measurement sequences, for
any two-rebit state ρ with Wρ � 0, and given the capability to
sample from Wρ? This problem is harder than the former: Not
only must the sequence of outcomes be internally consistent
for all measurement sequences, but also it needs to represent
the state ρ.

Memory cost now depends on the state ρ. If ρ is a mixture
of stabilizer states, i.e., the sets � can be limited to m = 0,
then the classical simulation algorithm of Table I can still run
on log2 24 ≈ 4.59 bits.

If sets � with m = 1 are included in the expansion, then
more two-rebit states ρ can be positively represented (among
them, for example, |T 〉1 ⊗ |T 〉2), but on the other hand, mem-
ory consumption goes up. For m = 1, there are 32 × 23 pairs
(�, γ ); cf. Fig. 1(a). Hence the memory consumption for
configurations with m = 1 is log2 72 ≈ 6.17 bits. (Note that
the sets � for m = 0 are not maximal. If sets with m = 1 are
included, then sets with m = 0 can be omitted without loss.)
The size |V ({m})| of the phase space versus the maximum
value of m is displayed in Table II. The memory cost is
log2 |V ({m})|. The volume fraction of positively representable
two-rebit and two-qubit states is displayed in Table III, for
various sets {m}.

B. Correctness and efficiency of the classical simulation

In preparation for the proof of correctness of the clas-
sical simulation algorithm, we introduce the following no-
tation. Given a probability distribution Wρ , there are two
objects that the classical simulation algorithm needs to re-
produce correctly, namely, the probability pa(sa) for the
outcomes sa ∈ Z2 of the measurement of any Pauli observ-
able Ta, and the postmeasurement state ρ ′. There are two
ways of obtaining these quantities, a quantum-mechanical
one and a classical one using the simulation algorithm
of Sec. VI A.

TABLE III. Volume fraction of state space filled by the positively
representable states, as a function of {m}; (top) two rebits, (bottom)
two qubits. The volume fraction V+/V was obtained numerically, by
sampling 106 random states according to the Fubini-Study measure
for pure states (second row) and the Hilbert-Schmidt measure for
mixed states (third row). The first column, m = 0, describes mixtures
of stabilizer states, and the last column hyperoctahedral states [38]
for comparison.

Two rebits

m 0 1 {1, 2} Hyperoctahedral

V+/V [pure] 0 1 1 0
V+/V [mixed] 0.144 1 1 0.924

Two qubits

m 0 1 {1, 2} Hyperoctahedral

V+/V [pure] 0 0.980 0.980 0
V+/V [mixed] 0.009 1 1 0.568

Regarding the outcome probability pa(sa) given Wρ , the
quantum mechanical way first obtains the corresponding
quantum state ρ from Wρ through Eq. (4). This is represented
by a map R : Wρ �→ ρ. Second, from ρ, the outcome probabil-
ity pa(sa) is obtained via the Born rule, pa(sa) = Tr(Pa(sa)ρ).
This is represented by a map πq(a) : ρ �→ pa. The classical
way uses the algorithm of Sec. VI A to obtain pa. This is
represented by a map πc(a) : Wρ �→ pa.

Likewise, the quantum mechanical way of obtaining the
postmeasurement state ρ ′ from Wρ proceeds by first applying
the map R [Eq. (4)] to obtain ρ, and second by obtaining ρ ′
from ρ through the Dirac projection postulate. The second
step is represented by a map �q(a).

The classical way of obtaining ρ ′ from Wρ proceeds by
first using the simulation algorithm to obtain Wρ ′ , and second
by mapping Wρ ′ to ρ ′ using the map R. The first step in this
procedure is represented by the map �c(a).

The classical simulation algorithm of Sec. VI A is correct
only if the quantum and the classical ways of computing
pa(sa) and ρ ′ agree. That is, we require the diagrams in Fig. 6
to commute.

Lemma 8. The diagrams of Fig. 6 commute.
Proof of Lemma 8. We discuss the outcome probability and

the postmeasurement state separately.

c(a)

q(a)

(a)c

(a)q

ap 

W

R

W

R

W

R

‘

‘

FIG. 6. Diagrams representing the quantum and the classical way
of calculating the probability of measurement outcomes (left) and the
postmeasurement state (right).
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Outcome probability pa(sa). Then the quantum mechanical
expression for pa(sa) is

pa(sa) =
∑

(�,γ )∈V
Wρ (�, γ ) Tr

[
I + (−1)sa Ta

2
Aγ

�

]

=
∑

(�,γ )∈V
Wρ (�, γ )

(
δa∈�δsa,γ (a) + 1

2
δa∈�

)
. (34)

The classical expression p(c)
a (sa) for pa(sa) obtained through

the algorithm of Sec. VI A is as follows. If a ∈ �, then the
conditional probability for the outcome sa given the state
(�, γ ) is δsa,γ (a). If a �∈ �, then the conditional probability
for the outcome sa is 1/2. Thus,

p(c)
a (sa) =

∑
(�,γ )∈V

Wρ (�, γ )

(
δa∈�δsa,γ (a) + 1

2
δa∈�

)
.

By comparing the two expressions, we find that pa(sa) =
p(c)

a (sa) for all a, sa, and the left diagram of Eq. (6) thus
commutes.

Postmeasurement state ρ ′. The quantum mechanical ex-
pression for the postmeasurement state ρ ′ has already been
given in Eq. (32), and we now derive the corresponding
expression ρ ′

(c) that follows from the classical simulation
algorithm.

We consider the joint probability p((�′, γ ′) ∩ sa) of ob-
taining the outcome sa in the measurement of Ta and ending up
in the state (�′, γ ′). We may invoke conditional probabilities
in two ways:

p((�′, γ ′) ∩ sa) =
∑

(�,γ )∈V
p((�′, γ ′) ∩ sa|(�, γ ))Wρ (�, γ )

= p((�′, γ ′)|sa)pa(sa).

Noting that p((�′, γ ′)|sa) = Wρ ′ (�′, γ ′), and equating the
two above expressions we find

Wρ ′ (�′, γ ′) =
∑

(�,γ )∈V

Wρ (�, γ )

pa(sa)
p((�′, γ ′) ∩ sa|(�, γ )).

(35)
We now infer the conditional probabilities p((�′, γ ′) ∩
sa|(�, γ )) from the classical simulation algorithm of
Sec. VI A,

p((�′, γ ′) ∩ sa|(�, γ ))

=
{ 1

2δsa,γ (a)δ�′,�(δγ ′,γ + δγ ′,γ+[a,·] ), if a ∈ �,

1
2δ�′,�×aδγ ′,γ×sa , if a �∈ �.

Inserting this into Eq. (35), and using the resulting expression
in Eq. (4), i.e., applying the map R, we obtain

ρ ′
(c) =

∑
(�′,γ ′ )∈V

∑
(�,γ )∈V

Wρ (�, γ )

2pa(sa)

[
δa∈�δsa,γ (a)δ�′,�

(
δγ ′,γ

+ δγ ′,γ+[a,·]
) + δa∈�δ�′,�×aδγ ′,γ×sa

]
Aγ ′

�′

=
∑

(�,γ )∈V

Wρ (�, γ )

2pa(sa)

[
δa∈�δsa,γ (a)

(
Aγ

� + Aγ+[a,·]
�

)

+ δa∈�Aγ×sa
�×a

]
.

Comparing the last expression with Eq. (32), we find that
ρ ′

(c) = ρ ′ for all a, sa, and the right diagram in Fig. 6 thus
commutes. �

Proof of Theorem 3. As explained in Sec. V, we only need
to discuss sequences of Pauli measurements. For those, we
show that the algorithm of Table I is correct, and, if the initial
Wρ can be efficiently sampled from, it is also computationally
efficient. (i) Correctness. Denote by ρ(t ) the state before the
t th measurement. With Lemma 8, by induction on the right
diagram in Eq. (6), if Wρ(1) represents the initial state ρ(1),
then Wρ(t ) represents ρ(t ) for all time steps t = 1, . . . , N .
Then, by the left diagram in Eq. (6), the outcome probabil-
ities pat (sat |s≺t ), with s≺t = (sa1 , . . . , sat−1 ) the measurement
record prior to time t , are also correct. Thus the joint outcome
probability sampled from

pa1,...,an

(
sa1 , . . . , saN

) =
N∏

t=1

pat

(
sat |s≺t

)
is also correct.

(ii) Efficiency. We recall that all cnc sets � are unions
of O(n) isotropic spaces �i (Theorem 1). Further, each �i

defines a stabilizer group

T γ

�i
:= {

T γ
a := (−1)γ (a)Ta, a ∈ �i

}
. (36)

This allows us to describe (�, γ ) ∈ V using polynomial
memory by storing O(n) stabilizer tables of size O(n2)
[17,43]. Indeed, by Definitions 2 and 3 and Lemma 3, T γ

�i

is a closed commutative group. Furthermore, with Defini-
tion 3, it holds that T γ

a T γ

b = T γ

a+b,∀a, b ∈ �i. This implies
the existence of a nontrivial stabilized subspace: Pγ

�i
:=∑

a∈�i
T γ

a /|�i| is a common +1-eigenprojector of every Ta ∈
T γ

�i
as T γ

a Pγ

�i
= ∑

b∈�i

T γ

a+b

|�i| = ∑
b′∈�i

T γ

b′
|�i| = Pγ

�i
,∀T γ

�i
, which

also implies Pγ

�i

2 = Pγ

�i
.

We now note that the update rules in algorithm I, namely,
(i) checking whether a ∈ �, (ii) evaluating γ on a ∈ �, (iii)
updating γ −→ γ + [a, ·], (iv) � −→ � × a, and (v) γ −→
γ × sa, implement tasks that admit efficient classical algo-
rithms in the stabilizer formalism [17,43]. Rules (i) and (ii):
To test a ∈ �, we check whether a ∈ �i, i = 1, . . . , O(n). If
a ∈ � j for some value of j, then γ (a) is computed as the
bit determining the phase of the stabilizer operator T γ

a ∈ T γ

�i
.

Both tasks can be solved classically efficiently via Gaussian
elimination given the stabilizer table data [17,43]. Rule (iii):
γ is updated to γ ′ = γ + [a, ·] by (classically efficiently)
evaluating γ (·) + [a, ·] on the generators of every �i. Rules

(iv) and (v): For all j, T
γ |� j ×sa

� j×a is the stabilizer group resulting
from the measurement of Ta with outcome sa on a state

with stabilizer group T
γ |� j

� j
. This update can be efficiently

performed using the standard measurement update rule of
Refs. [17,43] to every stabilizer table in the description of
(�, γ ). Thus, all steps of the algorithm run in polynomial
time. �

VII. THE CASE OF Wρ < 0

As we have established in the previous sections, Wρ < 0 is
a precondition for quantum speedup. When the initial state is
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represented by a quasiprobability rather than a true probability
function, a standard problem of interest is estimating outcome
probabilities for sequences of measurements. An established
method for probability estimation is Ref. [28], utilizing the
Hoeffding bound. Note that probability estimation is a differ-
ent problem than weak simulation [24] and is not efficiently
adaptive.

A. Robustness

In close analogy to the “robustness of magic” [27] RS

(the subscript S is for “stabilizer”), we define a phase space
robustness R, through

R(ρ) := min
W | 〈A,W 〉=ρ

‖W ‖1, (37)

with 〈A,W 〉 := ∑
α∈V WαAα .

Since the definitions of the robustness R and of the robust-
ness of magic RS [27] are so similar, one may wonder if there
is a relation between them. This is indeed the case; namely,
we have the following result.

Lemma 9. For all quantum states ρ, of any number n of
qubits, the phase space robustness R(ρ) and the robustness of
magic RS (ρ) are related via

R(ρ) � RS (ρ) � (4n + 1)R(ρ). (38)

Thus, the phase space robustness R is never larger than the
robustness of magic, but can only be moderately smaller. The
proof of Lemma 9 is given in Appendix C.

B. Hardness of classical simulation

The Hoeffding bound says that the number N of samples
required to estimate the output probability distribution up to
an error ε scales as N ∼ M2/ε2, where M is a measure of the
negativity contained in the quantum process. In our case, the
operations are positivity-preserving, and all negativity comes
from the initial state. The algorithm of Pashayan et al. [28],
when applied to our setting, says that the number N of samples
required to estimate the output probability scales as

N ∼ R(ρinit )2

ε2
.

Thus, the robustness R(ρinit ) of the initial state ρinit is the
critical parameter determining the classical hardness of prob-
ability estimation.

The same relation, with the robustness R replaced by the
robustness of magic RS holds for the classical simulation
based on quasiprobability distributions over stabilizer states
[27]. Lemma 9 above is therefore of interest for relating the
operational costs of the two simulation methods.

Classical simulation also requires a quasiprobability func-
tion Wμ⊗n for n copies of the magic state μ. Since the n-qubit
phase space is large, the numerical optimization to obtain
the least-negative expansion Wμ⊗n is computationally costly.
However, we can apply a similar splitting into smaller blocks
of magic states as in the stabilizer case [27]. The computa-
tional cost for providing the expansion is then a function of
block size rather than total number of copies n. The one-norm
of the resulting expansion is smaller than of the stabilizer

expansion, by a factor that is constant in n. Details are given
in Appendix D.

C. Elements of a resource theory based on W

It is illuminating to discuss QCM within the framework
of resource theories. Every resource theory has three main
operational components [44]: (i) the resource(s), (ii) the non-
resources, or free states, and (iii) the free operations.

In the physical setting of our interest, the resources are
quantum states which cannot be positively represented by W
(cf. Theorem 3). The free operations are Clifford unitaries
and Pauli measurements. The free states are those that can
be created from the free operations from a completely mixed
state, i.e., all mixtures of stabilizer states.

We observe that there is a third class of states which
are neither resources nor free, namely, the positively repre-
sentable states which are not mixtures of stabilizer states.
Such states are called (iv) bound magic states. We have seen
an example of them in Sec. IV D, the general one-qubit states
tensored with a stabilizer state on arbitrarily many qubits.

The reason for calling those states “bound magic” is that
they cannot be distilled into computationally useful ones by
free operations. In our setting, by Theorem 2, positive repre-
sentability is an invariant under the free operations. Hence,
bound states can be converted only into other bound states
or into free states by the free operations, but never into a
resource.

The question of interconvertibility may more generally
be asked for resource states. To facilitate this discussion,
one may identify monotones, i.e., real-valued functions on the
state space that never increase under the free operations. The
main result of this section is that the robustness R, defined in
Eq. (37) and already known to measure hardness of classical
simulation by sampling, is a monotone.

Theorem 4. The robustness R is a monotone under all
Clifford unitaries and Pauli measurements.

As part of the proof of Theorem 4, we now discuss an
important structural property of the quasiprobability function
W , namely, its covariance under Clifford unitaries. Let Cln
be the n-qubit Clifford group. It acts on the n-qubit Pauli
operators via

h(Ta) := hTah† = (−1)�h (a)Tha, ∀h ∈ Cln.

This relation simultaneously defines the phase function � and
the action of Cln on E . It implies an action of the Clifford
group on the phase point operators Aγ

�, which in turn induces
an action on the sets � and the functions γ , via

h(Aγ

�) = 1

2n

∑
a∈�

(−1)γ (a)h(Ta) = 1

2n

∑
b∈�′

(−1)γ
′(b)Tb.

Therein, the set �′ is defined as �′ := {ha, a ∈ �}, and the
function γ ′ : �′ −→ Z2 is given by

γ ′(ha) := γ (a) + �h(a), ∀a ∈ �.

Henceforth we denote �′ as h · � and γ ′ as h · γ , to emphasize
the dependence on h ∈ Cln.
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For use in the proof below we quote Lemma 3 from
Ref. [35], which says that, for any face (a, b) ∈ � × �,

�h(∂ (a, b)) = β(ha, hb) + β(a, b) mod 2.

We then have the following result.
Lemma 10. V is mapped to itself under Cln, and the

quasiprobability function W transforms covariantly. That is,
if the state ρ can be described by Wρ through Eq. (4), then for
any h ∈ Cln the state hρh† can be described by a quasiproba-
bility function Whρh† defined by

Whρh† (�, γ ) := Wρ (h−1 · �, h−1 · γ ).

Remark 3. We say “the state ρ can be described by Wρ”
rather than “is described” because Wρ is not unique.

Proof of Lemma 10. First, we show that the phase space
V is closed under the action of Cln, i.e., if (�, γ ) ∈ V then
(�′, γ ′) ∈ V . The four items in Definition 4 need to be
checked. (i) Closedness under inference. Assume that c, d ∈
�′, and [c, d] = 0. Then there exist a, b ∈ � such that c = ha,
d = hb and [a, b] = 0. Then c + d = ha + hb = h(a + b) ∈
�′, since a + b ∈ � by the assumption of closedness. Hence
�′ is closed under inference.

(iii) γ ′ satisfies Eq. (10). With the definition of γ ′ we have
(all addition mod 2)

dγ ′(ha, hb) = dγ (a, b) + �h(∂ (a, b))

= dγ (a, b) + β(ha, hb) + β(a, b)

= β(ha, hb).

Therein, in the second line we have used Eq. (10). Thus, γ ′
satisfies Eq. (10) on its domain.

(ii) �′ is noncontextual. With γ ′ we have just proved the
existence of a function on �′ that satisfies Eq. (10).

(iv) γ ′ satisfies Eq. (3). Since γ satisfies Eq. (3), it follows
I = h(I ) = h[(−1)γ (0)T0] = (−1)γ (0)+�h (0)T0 = (−1)γ

′(0)T0.
Equation (3) is thus satisfied for γ ′.

Hence, if (�, γ ) ∈ V then (�′, γ ′) ∈ V , as claimed.
Next we turn to the covariance of W under Cln. We have

hρh† =
∑

(�,γ )∈V
Wρ (�, γ )h

(
Aγ

�

)

=
∑

(�,γ )∈V
Wρ (�, γ )Ah·γ

h·�

=
∑

(�,γ )∈V
Wρ (h−1 · �, h−1 · γ )Aγ

�.

Comparing the last expression with the expansion Eq. (4)
for hρh†, we find that for all h ∈ Cln, the quasiprobability
distribution Whρh† defined by

Whρh† (�, γ ) = Wρ (h−1 · �, h−1 · γ ) (39)

describes the state hρh†. This is the covariance condition. �
We are now ready to prove the monotonicity of R, as stated

in Theorem 4.
Proof of Theorem 4. (a) Clifford unitaries. With Lemma

10, we have that for any n-qubit Clifford gate h applied to any
n-qubit state ρ, the quasiprobability distribution Whρh† can be
related to Wρ via the covariance condition Eq. (39). Since W is

nonunique, there may a priori be a representation W ′
hρh† with

smaller one-norm, and thus it holds that

R(hρh†) � R(ρ), ∀ρ, ∀h ∈ Cln. (40)

(b) Pauli measurements. We consider the measurement of
a Pauli observable Ta on a quantum state ρ. Denote by ρa,sa

the normalized postmeasurement states for the outcomes sa =
0, 1, respectively. We have to show that, for all n, for all a ∈
Zn

2 × Zn
2 and all n-qubit states ρ it holds that

pa(0)R(ρa,0) + pa(1)R(ρa,1) � R(ρ). (41)

With Eq. (33), we can write pa(0)Wρa,0 = W+ + W +, and
pa(1)Wρa,1 = W− + W −, where

W+(�′, γ ′) :=
∑

(�,γ )∈V

Wρ (�, γ )

2
δa∈�δγ (a),0

(
δ(�′,γ ′ ),(�,γ )

+ δ(�′,γ ′ ),(�,γ+[a,·])
)
,

W−(�′, γ ′) :=
∑

(�,γ )∈V

Wρ (�, γ )

2
δa∈�δγ (a),1

(
δ(�′,γ ′ ),(�,γ )

+ δ(�′,γ ′ ),(� γ+[a,·])
)
,

W +(�′, γ ′) :=
∑

(�,γ )∈V

Wρ (�, γ )

2
δa∈�δ(�′,γ ′ ),(�×a,γ×(sa=0)),

W −(�′, γ ′) :=
∑

(�,γ )∈V

Wρ (�, γ )

2
δa∈�δ(�′,γ ′ ),(�×a,γ×(sa=1)).

(42)

From now on, denote by Wρ the optimal representation
for ρ w.r.t. one-norm, i.e., R(ρ) = ‖Wρ‖1. With the tri-
angle inequality, and the fact that the functions Wρa,sa

in-
duced from the optimal Wρ through Eq. (42) need not be
optimal for the states ρa,sa w.r.t. their one-norm, it holds
that pa,0 R(ρa,0) � ‖W+‖1 + ‖W +‖1, and pa,1 R(ρa,1) �
‖W−‖1 + ‖W −‖1, hence

pa,0 R(ρa,0) + pa,1 R(ρa,1)

� ‖W+‖1 + ‖W−‖1 + ‖W +‖1 + ‖W −‖1. (43)

With Eq. (42) we find that

‖W+‖1 + ‖W−‖1

=
∑

(�′,γ ′ )∈V

δa∈�′

2
|Wρ (�′, γ ′) + Wρ (�′, γ ′ + [a, ·])|

�
∑

(�′,γ ′ )∈V
δa∈�′ |Wρ (�′, γ ′)|,

where in the second line we used the triangle inequality again.
Furthermore, performing the summation over all (�′, γ ′) ∈ V
first, we obtain

‖W +‖1 = ‖W −‖1 �
∑

(�,γ )∈V

δa∈�

2
|Wρ (�, γ )|.

Inserting the last two relations into inequality (43), we arrive
at

pa,0 R(ρa,0) + pa,1 R(ρa,1) � ‖Wρ‖1.

Since R(ρ) = ‖Wρ‖1 by assumption, Eq. (41) follows. �
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TABLE IV. Robustness values of selected magic states. For
robustness of magic (RS), also see Ref. [45].

State R RS

|H〉⊗2 1.000 1.747
|T 〉⊗2 1.000 2.232
|H〉⊗3 1.283 2.219
|T 〉⊗3 1.385 3.098
|Hoggar〉 1.800 3.800

D. Numerical results

In Table IV and Fig. 7 we present numerical values4 for
the robustness of various magic states, and compare them
to robustness of magic as defined by Howard and Campbell
[27]. Table IV summarizes the robustness comparisons for
the common magic states, as well as the maximal-robustness
Hoggar state [27]. In Fig. 7 we plot the robustness against
the stabilizer state robustness for three qubits, as a function
of rotation angle. Note the wide and almost flat—though not
perfectly flat—plateaus of robustness R in the vicinity of
stabilizer states.

E. Curious resurgence of 4n-dimensional phase space

Numerical calculations of robustness for various quantum
states revealed an unexpected feature. Namely, the optimal
quasiprobability distribution Wρ w.r.t. Eq. (37) for a given
n-qubit state ρ always was nonzero only on 4n phase space
points or fewer. 4n is only a tiny fraction of the whole phase
space V and furthermore the naive expectation if one were
completely oblivious of the differences between even and odd
d . However, the support of the optimal W (ρ) depends on the
state ρ. We can now explain the initially puzzling upper bound
on the size of the support, 4n.

The robustness R of a state ρ defined in Eq. (37) is the
solution to the convex optimization problem

min
q

{||q||1 : Mq = b}, (44)

where Mi, j = Tr(Aα j Pi ), bi = Tr(ρPi ), {α j : 1 � j � |V|} is
an enumeration of the phase points and Pi are the n-qubit Pauli
operators. For each variable q j in Eq. (44), define two new
variables q+

j := max(0, q j ) and q−
j := max(0,−q j ). Then the

convex optimization problem of Eq. (44) is equivalent to the
standard form linear program

min
q

⎧⎨
⎩

∑
j

q+
j + q−

j : M̃q̃ = b, q̃ � 0

⎫⎬
⎭, (45)

where M̃ = [M −M] and q̃ = [(q+)T (q−)T ]
T

. This
doubles the number of variables but does not change the
number of equality constraints. Since we know this problem
is feasible (any physical state can be written as an affine com-
bination of phase point operators) and bounded (no physical

4Our calculations use the software packages CVXPY [53] and
GUROBI [54].

FIG. 7. Robustness R (solid line) and robustness of magic RS

(dotted line) for the state |H (φ)〉⊗3, cf. Eq. (14), as a function of φ.
Highlighted is the region near a stabilizer state, at φ = π .

state can have robustness less than 1), by the fundamental the-
orem of linear programming, for any physical state, Eq. (45)
has a solution at a vertex of the feasible polytope [46].

Since Eq. (45) has an equality constraint for each n-qubit
Pauli operator (including the identity), this means any state ρ

has a robustness-minimizing expansion in phase point opera-
tors with no more than 4n nonzero coefficients.

VIII. DISCUSSION

A. Stratonovich-Weyl correspondence

In the field of quantum optics, an important set of criteria
for a proper quasiprobability distribution over a phase space
is given by the Stratonovich-Weyl (SW) correspondence.
Denote by F (s)

A : X −→ R the quasiprobability distribution
corresponding to the operator A, with X the phase space and
s a real parameter in the interval [−1, 1]. In the standard for-
malism for infinite-dimensional Hilbert spaces, s = −1, 0, 1
correspond to the Glauber-Sudarshan P, Wigner, and Husimi
Q function, respectively. The SW correspondence is the fol-
lowing set of criteria on the F (s)

A [47]; also see Ref. [48],
(0) Linearity: A −→ F (s)

A is a one-to-one linear map.
(1) Reality:

F (s)
A† (u) = [

F (s)
A (u)

]∗
,∀u ∈ X.

(2) Standardization:∫
X

dμ(u)F (s)
A (u) = Tr A.

(3) Covariance:

F (s)
g·A (u) = F (s)

A (g−1u), g ∈ G,

with G the dynamical symmetry group.
(4) Traciality:∫

X
dμ(u)F (s)

A (u)F (−s)
B (u) = Tr AB.

We now investigate to which extent these SW criteria apply
to the present quasiprobability function W . There are two
deviations. First, the present quasiprobability function W does
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not come with a parameter s; there is only a single function
W . This will affect the formulation of traciality. Second, the
present mapping A −→ WA is one-to-many, as we have noted
in Sec. III A. The mapping is nonetheless linear, and A + B
can be represented as WA + WB.

The remaining SW conditions do apply. (1) Reality of W
follows directly from the definition Eq. (4), since all Aγ

� are
Hermitian. (2) Standardization: The definition Eq. (2) and
property Eq. (3) of the phase point operators imply Tr Aγ

� = 1,
for all � and γ ; and standardization then follows from Eq. (4).

(3) Covariance holds for the entire Clifford group, as
stated in Lemma 10. In fact, insisting on Clifford covariance
leads to the nonuniqueness of W , namely, an overcomplete
set of phase point operators is necessary to achieve Clifford
covariance [49].

(4) Traciality. In the absence of a continuously varying
parameter s, we define a dual quasiprobability function W̃ in
addition to W , to stand in for F (−s). For all Pauli operators Ta

we have

W̃Ta (�, γ ) :=
{

(−1)γ (a), a ∈ �

0, a �∈ �
.

Since the n-qubit Pauli operators form an operator basis, W̃
can be extended to all n qubit operators by linearity. With
Eq. (34) we then have

Tr Aρ =
∑

(�,γ )∈V
W̃A(�, γ )Wρ (�, γ ).

We thus satisfy the SW criteria (1)–(4).
To conclude, we reiterate that for the present purpose of

classically simulating QCM, a crucial property of W is pos-
itivity preservation under Pauli measurement. This property
has no counterpart in the Stratonovich-Weyl correspondence.

B. Probabilistic hidden variable model

In the case of odd d [14], there is a third equivalent
indicator of classicality, next to positivity of the initial Wigner
function and the efficiency of classical simulation of QCM
by sampling. Namely, a positive Wigner function is equiva-
lent to a noncontextual hidden variable model (HVM) with
deterministic value assignments [16]. This triple coincidence
cannot be replicated in d = 2, because, for n � 2 all quantum
states—even the completely mixed state—are contextual [16].

One interpretation of this situation is that contextuality,
i.e., the unviability of noncontextual HVMs, is not sufficiently
tight a criterion to reveal genuine quantumness. A more
stringent marker is required, which (i) classifies the present
HVM as classical, and (ii) for QCM in odd d reduces to
contextuality. At present, we have no suggestion for this
more restrictive notion of quantumness. However, we point
to a hidden variable model that is illustrative of the shifted
quantum-to-classical boundary in the multiqubit case, and we
propose it for further study.

Namely, when positive, the quasiprobability distribution W
can be considered an HVM. While classified as contextual
by the common definitions, it shares many features with
noncontextual HVMs.

This HVM consists of a triple (�, {hλ}, pλ) where � = V
or VM , hλ is a compatible family of distributions on the set of

outcomes on contexts and pλ is a probability distribution on
the set � of hidden variables. For each α = (�, γ ) we define
hα by

hα
I (s) = Tr

(
PsA

γ

�

)
. (46)

Therein I is any isotropic subspace, s : I → Z2 is a function,
and Ps is the projector corresponding to the outcome. Note
that Ps = 0 if ds �= β.

It is useful to state the probability distributions hα
I (·) in

their explicit form. Let Ps denote the projector corresponding
to the noncontextual value assignment s : I → Z2. Then we
have

h(�,γ )
I (s) = |I ∩ �|

|I| δs|I∩�,γ |I∩�
. (47)

From Eq. (47) we see that the value assignments in our HVM
are generally probabilistic; only in the special case of I ⊂ �

they become deterministic. Further, the {hα
I } form compatible

families,

hα
I

∣∣
I∩I ′ = hα

I ′
∣∣
I ′∩I , ∀I, I ′, ∀α ∈ V .

When applicable, this HVM reproduces the predictions of
quantum mechanics (cf. Theorem 3) for measurements of
Pauli observables, in single contexts or arbitrary measurement
sequences.

We argue that the HVM of Eq. (46) is classical. It is
an HVM with partial value assignments, with deterministic
values for some observables and random values for others.
The only resource this HVM uses beyond those required by
noncontextual HVMs with deterministic value assignments
is that of classical uniform randomness (in the evaluation of
value assignments). Such use of randomness should not render
the present HVM genuinely quantum.

And yet, the HVM of Eq. (46) is (a) contextual
in the sense of Abramsky and Brandenburger [50], (b)
preparation and transformation contextual, as well as
measurement-noncontextual, in the sense of Spekkens [51],
and (c) contextual for sequences of transformations in the
recently introduced sense of Mansfield and Kashefi [52].

To summarize, we have described a hidden variable model
corresponding to positive quasiprobabilities W . By this corre-
spondence, the HVM is considered classical from the quantum
optics perspective. It is also classical from the computational
perspective, as it leads to efficient classical simulation of
QCM (for applicable magic states). And yet this HVM is
contextual, per the definitions commonly applied. As such,
the present HVM may serve as a reference point for a refined
foundational notion of quantumness that goes beyond contex-
tuality.

IX. CONCLUSION

We have introduced a quasiprobability distribution W over
generalized phase space, which is defined for any number n
of qudits with any number d of levels. For multiqudit systems
with odd local dimension d , W reduces to the familiar Wigner
function for finite-dimensional systems defined by Gross [29].
For even d , the phase space is enlarged and W becomes
nonunique. Importantly, also for d = 2 (the multiqubit case),
W has the property that a positive quasiprobability function
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remains positive under all Pauli measurements. This property
is crucial for classical simulation algorithms of quantum
computation with magic states (QCM) by sampling.

Once this fundamental property is established, it is natural
investigate the efficiency (or nonefficiency) of classical sim-
ulation in the various regimes and resource theories charac-
terizing QCM. Here we have treated the canonical questions
that arise in this context: we have devised an efficient classical
simulation of QCM for W � 0 and clarified the relation to
the qubit stabilizer formalism. Namely, the present method
for efficient classical simulation of QCM strictly contains
the stabilizer method. It applies to all mixtures of stabilizer
states, but in addition to certain states outside the stabilizer
polytope. We have further characterized the hardness of clas-
sical simulation for W < 0 in terms of a robustness measure,
and established this robustness is a monotone under the free
operations of QCM.

In summary, we arrive at a resource perspective of QCM
on qubits that closely resembles the corresponding picture for
odd dimension d . However, there are two deviations. First,
the phase space on which the quasiprobability function W is
defined has a far more intricate structure for d = 2 than for
odd d . Second, for d = 2 the hidden variable model (HVM)
induced by any non-negative quasiprobability function Wρ is
contextual, as a consequence of Mermin’s square.

The latter observation leads to a puzzle. The HVM induced
for positively representable states ρ is classified as “classi-
cal” from the perspectives of quantum optics (Wρ � 0) and
computer science (classical simulation is efficient), but it is
classified as “quantum” from the perspective of contextuality.

In this regard, we have argued (also see Ref. [16]) that
in multiqubit QCM, contextuality is not suitable as an indi-
cator of genuine quantumness. We have proposed the notion
of “HVM with partial noncontextual value assignments” in
which classicality and contextuality coexist.
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APPENDIX A: PROOF OF LEMMA 1

Recall that, unlike most material in this paper, Lemma 1
holds for all local dimensions d .

Proof of Lemma 1. Consider two sets, �, �̃ ∈ V , such that
� ⊂ �̃, and the phase point operator Aγ

� according to Eq. (2).
Furthermore, denote by 	̃ the set of value assignments γ̃ :
�̃ −→ Zd that satisfy the constraint

γ̃ |� = γ .

Then 	̃ is the coset of a vector space U . This is the first fact
we prove. Write γ̃ = γ̃0 + η, where γ̃0 ∈ 	̃ is some reference
function, and the functions η ∈ U all satisfy

dη = 0, (A1a)

η|� = 0. (A1b)

The condition of Eq. (A1a) need be satisfied only for com-
muting pairs of elements in �̃. From Eq. (A1) it follows that
if η, η′ ∈ U then cη + c′η′ ∈ U , for all c, c′ ∈ Zd . Hence U is
indeed a vector space, as claimed.

Key is the relation

Aγ

� = 1

|	̃|
∑
γ̃∈	̃

Aγ̃

�̃
, (A2)

which we now prove, armed with the previous observation.
Using the definition of the phase point operators, we start
expanding the r.h.s. of Eq. (A2):

1

|	̃|
∑
γ̃∈	̃

Aγ̃

�̃
= 1

|	̃|
∑
γ̃∈	̃

1

dn

∑
a∈�̃

ωγ̃ (a)Ta

= 1

|	̃|
1

dn

∑
a∈�̃

ωγ̃0(a)Ta

∑
η∈U

ωη(a).

Now we consider two cases. (i) a ∈ �. Then, with property
Eq. (A1b), ∑

η∈U

ωη(a) = |U |, ∀a ∈ �. (A3)

Furthermore, note |	̃| = |U |.
(ii) a ∈ �̃\�. There is at least one η ∈ U with η(a) �= 0.

Since U is a vector space, it follows by character orthogonality
that ∑

η∈U

ωη(a) = 0, ∀a ∈ �̃\�. (A4)

Inserting Eqs. (A3) and (A4) in the above expansion, and
furthermore using property Eq. (A1b), we find

1

|	̃|
∑
γ̃∈	̃

Aγ̃

�̃
= 1

dn

∑
a∈�

ωγ (a)Ta = Aγ

�.

This proves Eq. (A2). Now, wlog. we may choose �̃ to
be maximal. Since by definition any set � is contained in
some maximal set �̃(�), we may convert any positive state
expansion over V into a positive state expansion over VM ,

ρ =
∑
�,γ

c(�, γ )Aγ

� =
∑
�,γ

c(�, γ )

|	̃�|
∑
γ̃∈	̃�

Aγ̃

�̃(�)
.

If the expansion coefficients on the l.h.s. are positive, so they
are on the r.h.s. �

APPENDIX B: PROOF OF LEMMA 7

Proof of Lemma 7. Statement (A): (�, γ + [a, ·]) ∈ V , ∀a ∈
�. The set � does not change, and we need only to check the
properties in Definition 4 that concern the function update,
i.e., Eqs. (10) and (3).
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Assume that γ : � −→ Z2 satisfies dγ = β on �, i.e.,
dγ ( f ) = β( f ) for all faces f ∈ F (�). Consider any such
face, with its boundary ∂ f consisting of the edges c, d , and
c + d . By definition of F (�) it holds that c, d, c + d ∈ �.
Then, with all addition mod 2,

d (γ + [a, ·])( f ) = dγ ( f ) + [a, ·](∂ f )

= dγ ( f ) + [a, c] + [a, d] + [a, c + d]

= dγ ( f )

= β( f ).

Thus, γ + [a, ·] satisfies Eq. (10).
Furthermore, assume that γ satisfies Eq. (3). Then

(γ + [a, ·])(0) = γ (0) + [a, 0] = γ (0). Hence, γ + [a, ·] sat-
isfies Eq. (3).

Statement (B): (� × a, γ × sa) ∈ V , ∀a �∈ � and sa ∈ Z2.
There are four items to check in Definition 4, namely, (I) � ×
a is closed under inference, (II) � × a is noncontextual, (III)
γ × sa satisfies Eq. (10), and (IV) γ × sa satisfies Eq. (3).

(I): Consider c, d ∈ � × a, with [c, d] = 0, and denote
c′ = c + a, d ′ = d + a. There are three subcases. (i) c, d ∈
�a. Then, c + d ∈ �a, since �a is closed under inference by
Lemma 6. Thus, c + d ∈ � × a.

(ii) c ∈ �a, d �∈ �a. By construction of � × a, d ′ ∈
�a. Thus, c + d = c + (d ′ + a) = (c + d ′) + a. Now, since
[c, d] = 0 by assumption and [c, a] = 0 (c ∈ �a) it follows
that [c, d ′] = 0. Since �a is closed by Lemma 6, it holds that
c + d ′ ∈ �a. By construction of � × a, c + d = (c + d ′) +
a ∈ � × a.

(iii) c, d �∈ �a. By construction of � × a, c′, d ′ ∈
�a. Thus, c + d = (c′ + a) + (d ′ + a) = c′ + d ′, and further
[c′, d ′] = 0. Since �a is closed under inference by Lemma 6,
c′ + d ′ = c + d ∈ �a. Thus, c + d ∈ � × a.

Thus in all three cases, c, d ∈ � × a, with [c, d] = 0, im-
plies c + d ∈ � × a. Hence, � × a is closed under inference.

(III): Assume that dγ = β on �, and consider a triple of
edges c, d, c + d ∈ � × a with [c, d] = 0. Then either (i) all
or (ii) one of these edges are in the component �a.

(i) c, d, c + d ∈ �a. Since �a ⊂ � and with Eq. (25a), it
holds that d (γ × sa)(c, d ) = dγ (c, d ) = β(c, d ).

(ii) W.l.o.g. assume that c ∈ �a and d, c + d �∈ �a, and
denote c′ = c + a, d ′ = d + a as before. Then, for the face
f = (c, d ) with boundary ∂ f consisting of the edges c, d and
c + d ,

d (γ × sa)( f ) = γ × sa(c) + γ × sa(d ) +
γ × sa(c + d )

= γ (c) + γ (d ′) + γ (c + d ′) +
β(a, d ) + β(a, c + d )

= β(c, d ′) + β(a, d ) + β(a, c + d )

= β(c, d ).

Therein, in the second line we have used Eq. (25), in the third
line Eq. (10), in the fourth line Eq. (28), and in the fourth line
dβ(a, d, c) = 0, cf. Eqs. (7) and (11).

(II): Per Definition (3), � × a is noncontextual if there
is a function τ : � × a −→ Z2 that satisfies dτ = β. We

have explicitly constructed such a function in (III) above,
τ := γ × sa.

(IV): Assume that γ : � −→ Z2 satisfies Eq. (3). Since
0 ∈ �a for all cnc sets �, with Eq. (25a) it follows that
γ × sa(0) = γ (0), and hence γ × sa also satisfies Eq. (3). �

APPENDIX C: PROOF OF LEMMA 9

Proof of Lemma 9. Recall from Lemma 3 that each set
� can be written in the form � = ⋃ξ (�)

k=1 Ik , where each Ik is
an isotropic subspace, Ik = 〈ak, Ĩ〉, ak ∈ E . Therefore, for all
(�, γ ) ∈ V , it holds that

Aγ

� =
(

ξ (�)∑
k=1

A
γ |Ik
Ik

)
− (ξ (�) − 1)Aγ |Ĩ

Ĩ
.

Therein, the phase point operators appearing on the r.h.s. are
all of the type m = 0, i.e., they correspond to stabilizer states.
The Wigner function δ(�,γ ) representing the operator Aγ

� can
thus be expanded as

δ(�,γ ) =
(

ξ (�)∑
k=1

δ(Ik ,γ |Ik )

)
− (ξ (�) − 1)δ(Ĩ,γ |Ĩ ).

Denote by ‖ · ‖1 the one-norm of the expansion in terms of
phase point operators Aγ

�, and by ‖ · ‖1,S the one-norm of the
expansion in terms of (density matrices of) stabilizer states.
With the last equation, the triangle inequality, ‖δ(Ik ,γ |Ik )‖1,S =
‖δ(Ĩ,γ |Ĩ )‖1,S = 1, and ξ (�) � 2n + 1 for all cnc sets � (cf.
Lemma 3), it follows that

‖δ(�,γ )‖1,S � 4n + 1. (C1)

Now, for any given state ρ consider the optimal representation
Wρ , i.e., the one with minimal norm ‖Wρ‖1. Then

RS (ρ) � ‖Wρ‖1,S =
∥∥∥∥∥∥

∑
(�,γ )∈V

Wρ (�, γ )δ(�,γ )

∥∥∥∥∥∥
1,S

� (4n + 1)
∑

(�,γ )∈V
|Wρ (�, γ )|

= (4n + 1)‖Wρ‖1

= (4n + 1)R(ρ).

Therein, in the first line we have an inequality because the
representation Wρ of ρ is optimized for ‖Wρ‖1, not necessarily
for ‖Wρ‖1,S . The third line follows by the triangle inequality
and Eq. (C1), and the fifth line holds as an equality because
Wρ , per assumption, was chosen to minimize ‖Wρ‖1.

This proves the right half of Eq. (38). The left half,
R(ρ) � RS (ρ), follows from the fact that all stabilizer states
correspond to phase point operators of type m = 0. Hence, an
expansion in terms of stabilizer states induces an expansion
in terms of phase point operators Aγ

�, with the same nonzero
coefficients. �

APPENDIX D: COMPUTING W REPRESENTATIONS
OF MANY COPIES OF MAGIC STATES

Here we describe how to construct valid quasiprobabilities
Wμ⊗n for n copies of a magic state μ, at bounded compu-
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tational cost. As with robustness of magic [27], we merge
expansions for small numbers of magic states into valid
expansions for larger numbers of copies.

Denote by �m
n cnc sets � with parameters n, m � n, and

choose the phases φ in Eq. (1) such that

Ta+b = Ta ⊗ Tb, ∀a ∈ �m1
n1

, b ∈ �m2
n2

. (D1)

Here we identified a and b as elements of Z2(n1+n2 )
d by writing

((aX , 0), (aZ , 0)) and ((0, bX ), (0, bZ )), respectively. We then
have the following result.

Lemma 11. Be �m1
n1

and �0
n2

two cnc sets with parameters
n1, m1 � n, and n2, m2 = 0, respectively. Then Aγ

�
m1
n1 ⊕�0

n2

:=
Aγ1

�
m1
n1

⊗ Aγ1

�0
n2

, with the function γ : �m1
n1

⊕ �0
n2

−→ Z2 de-

fined by

γ (a1 + a2) := γ1(a1) + γ2(a2), (D2)

for all a1 ∈ �m1
n1

, a2 ∈ �0
n1

is a valid phase point operator on
n1 + n2 qubits.

Proof of Lemma 11. We need to verify the properties of
Definition 4, namely, (a) that �m1

n1
⊕ �0

n2
is cnc, and (b) that

the function γ defined in Lemma 11 satisfies Eq. (10), i.e.,
dγ = β.

Regarding (a), with Eq. (15), �m1
n1

= ⋃m1
k=1〈ak, Ĩ〉, and

�0
n2

= I , with Ĩ , I isotropic subspaces. Then

�m1
n1

⊕ �0
n2

=
m1⋃

k=1

〈ak, Ĩ ⊕ I〉,

and Ĩ ⊕ I is also an isotropic subspace. Hence the set �m1
n1

⊕
�0

n2
is cnc by Lemma 3.

Regarding (b), we need to show that for all a, b ∈ �m1
n1

⊕
�0

n2
with [a, b] = 0 it holds that γ (a + b) + γ (a) + γ (b) =

β(a, b). To this end, for any given commuting pair a, b, we
split

a = a1 + a2, b = b1 + b2,

with a1, b1 ∈ �m1
n1

, a2, b2 ∈ �0
n2

. The decompositions are
unique. Since a and b commute, [a1, b1] + [a2, b2] = 0. Fur-
thermore, a2 commutes with b2, since �0

n2
is an isotropic

subspace. Thus,

[a1, b1] = [a2, b2] = 0. (D3)

Further, Eq. (D1) implies that

β(c, d ) = 0, ∀c ∈ �m1
n1

, d ∈ �0
n2

. (D4)

Now we rewrite

γ (a + b) = γ [(a1 + b1) + (a2 + b2)]

= γ1(a1 + b1) + γ2(a2 + b2)

= γ1(a1) + γ1(b1) + γ2(a2) + γ2(b2)

+β(a1, b1) + β(a2, b2)

= γ (a1 + a2) + γ (b1 + b2) + β(a1, b1)

+β(a2, b2) + β(a1, a2) + β(b1, b2)

= γ (a) + γ (b) + β(a1 + a2, b1 + b2)

+ dβ(a1, a2, b1 + b2) + dβ(a2, b2, b1)
+ dβ(a1, b1, a2 + b2)

= γ (a) + γ (b) + β(a, b).

Therein, in the second line we have used the definition of γ in
Lemma 11. In the third line Eq. (D3), and in the fourth line the
definition of γ again. In the fifth line we have used Eq. (11),
Eq. (8), and Eq. (D4) on β(a1 + b1, a2 + b2). In the last line
we used Eq. (7) (dβ = 0). �

Denote by W (0)
σ an expansion Eq. (4) of the state σ , but

containing only phase point operators with parameter m = 0,
i.e., an expansion into stabilizer states. Wρ is a valid expansion
of ρ, according to Eq. (4). Then it follows from Lemma 11 that

Wρ⊗σ := Wρ ⊗ W (0)
σ (D5)

is a valid expansion of ρ ⊗ σ .
Let k be the largest integer for which decompositions Wμ⊗k

and W (0)
μ⊗k are obtainable. Then, with Eq. (D5), Wμ⊗n = Wμ⊗k ⊗

W (0)
μ⊗n−k , and the second factor may be further decomposed

as W (0)
μ⊗n−k = W ⊗(n/k−1)

μ⊗k , if k divides n. Thus, we arrive at an
explicit decomposition for μ⊗n, with one-norm

‖Wμ⊗n‖ = R(μ⊗k )RS (μ⊗k )n/k−1.

Thus the reduction to blocks of k magic states familiar from
the stabilizer case [27] can be applied in the present setting
as well. By Lemma 9, the resulting one-norm is lower by
a constant factor than of the corresponding expansion into
stabilizer states.
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