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Efficient classical simulation of quantum computation beyond Wigner positivity
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We present the generalization of the CNC formalism, based on closed and noncontextual sets of
Pauli observables, to the setting of odd-prime-dimensional qudits. By introducing new CNC-type phase
space point operators, we construct a quasiprobability representation for quantum computation which
is covariant with respect to the Clifford group and positivity preserving under Pauli measurements, and
whose nonnegative sector strictly contains the subtheory of quantum theory described by nonnegative
Wigner functions. This allows for a broader class of magic state quantum circuits to be efficiently
classically simulated than those covered by the stabilizer formalism and Wigner function methods.

1 Introduction

Quasiprobability representations have long played an important role in physics bridging the gap between
classical and quantum. Originally conceived by Wigner [1] as a means to adapt phase space methods of
statistical mechanics to quantum physics, they have since found many applications in diverse contexts [2–8].
Notably, they have proven useful in describing and understanding quantum computation [9–15].

Gross’ Wigner function [11–13]—a Wigner function for systems of odd-dimensional qudits—has proven
particularly effective for describing quantum computation. It defines a noncontextual (thus classical) model of
the stabilizer subtheory [16–20], a realm where the function remains nonnegative. Negativity in this function
has been proposed as the source of quantum computational power [9]. This aligns with the traditional view
where, as negativity in the Wigner function is the feature that distinguishes it from a classical probability
distribution over a phase space, it is considered an indicator of nonclassical behaviour [7].

Veitch et al [15] showed that negativity in this Wigner function is a necessary condition for a quantum
computational advantage in the model of quantum computation with magic states (QCM) on odd-prime
dimensional qudits. This is achieved by introducing an efficient classical simulation algorithm for QCM
circuits that applies whenever the Wigner representation of the input state of the quantum circuit in question
is nonnegative. Further, negativity in the representation of the input state can be used to quantify the cost of
classical simulation, since in that case another sampling-based classical simulation algorithm can be applied
where the number of samples required to achieve a given error scales with the amount of negativity [21].

These result can be easily extended to quantum computation on qudits of any odd dimension [22], but
issues arise when attempting to extend them to computation on even-dimensional qudits. It was widely
believed that no Wigner function exists which describes quantum computation on even-dimensional qudits,
and this was proven in a few special cases [23–25]. This issue has since been settled for the general case [19,
20], but in the meantime a range of alternative quasiprobability representations have been defined [26–32].
These representations relax some of the assumptions that typically define a Wigner function [3, 6, 20], but
they retain the properties required for classical simulation of quantum computation, namely, covariance with
respect to the Clifford group and preservation of nonnegativity under Pauli measurements.

One of these recently introduced quasiprobability representations is the so-called CNC construction [31].
In the case of odd-dimensional qudits, phase space points of the Wigner function are identified with non-
contextual value assignment functions on the set of Pauli observables [33], however, in the case of even
dimensions, such noncontextual value assignments do not exist [18, 20, 34]. The CNC construction circum-
vents this issue by allowing the set of Pauli observables over which to value assignment is defined to also
vary. That is, phase space points are identified with pairs (Ω, γ), where Ω is a noncontextual subset of the
Pauli observables and γ is a noncontextual value assignment on Ω. “CNC” refers to these sets Ω, CNC
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stands for Closed under inference and NonContextual, two technical constraints we impose on the sets that
we will define later. The result is a much larger phase space than a typical Wigner function would have,
as required for consistency with a proven memory lower bound for simulating quantum contextuality [35],
but the properties of the phase space required for simulating quantum computations are retained. This
construction applies to any Hilbert space dimension, though so far it has mostly been studied for systems of
multiple qubits [31].

In this paper, we address the CNC construction for the case of odd-prime dimensional qudits. In Ref. [31],
it was claimed that in this case the CNC construction is equivalent to Gross’ Wigner function [11–13], but this
was later shown to be incorrect [36]. Here we show that it can actually outperform Gross’ Wigner function.
That is, although the CNC phase space contains all of the points of the Wigner function phase space, our
approach also involves the introduction of new CNC-type phase space points that are not equivalent to Wigner
function phase space points, or convex mixtures thereof. The resulting quasiprobability representation
obtained by introducing these new phase space points remains closed under Clifford operations and Pauli
measurements, ensuring that the representation is capable of simulating quantum computations in the magic
state model.

We provide a characterization of the CNC-type phase space points for odd-prime-dimensional qudits.
One of the primary differences between this case and the qubit case stems from the fact that there are no
state-independent proofs of contextuality among Pauli observables on odd-dimensional qudits [18, 20]. As a
result, only the closure under inference condition is required for the characterization, not the noncontextuality
condition. Despite this difference, the classification of CNC-type phase space point operators in odd-prime-
dimensional qudits looks very similar to the qubit case.

We also compare this construction with the Λ polytope model [37, 38], a recently introduced hidden
variable model for QCM. In the multiqubit case, CNC-type phase space point operators are vertices of the
Λ polytopes, and so they are identified with some of the hidden variables of that model [37, 39]. This is
partially mirrored in the odd-prime-dimensional case where at least some of the CNC-type phase space point
operators, including the phase space points of the Wigner function, are vertices of the qudit version of the
Λ polytope model [38].

The primary advantage of this new construction lies in the expanded set of states that can be positively
represented by the new quasiprobability function. Specifically, our construction goes beyond the capabilities
of the previous Wigner function [11–13, 15] and stabilizer [40–43] methods in identifying states that can be
efficiently classically simulated. This expanded scope provides a more precise delineation of the classical-
to-quantum transition in QCM on odd-prime-dimensional qudits, shedding light on the properties of magic
states that enable a computational advantage in these systems and more generally offering new insights into
the nature of computational resources in quantum computation with magic states.

The rest of this paper is organized as follows. In Section 2, we provide necessary background on the
model of quantum computation with magic states and quasiprobability representations of it. In Section 3,
we define the CNC phase space, and we determine its relation to the phase space of the Wigner function
for odd-prime-dimensional qudits. We also consider a simplification that removes redundancy in the phase
space points for the case of multiple qubits, and we show why this reduction fails for odd-prime-dimensional
qudits, thus proving that the CNC construction does not reduce to the Wigner function in odd dimensions.
In Section 4, we provide a characterization of the CNC phase space for odd-prime-dimensional qudits, this
characterization partially mirrors the structure of the Wigner function phase space [33], as well as that of
the multiqubit CNC phase space [31, §IV].

In Section 5, we demonstrate that this new phase space is closed under Clifford gates and Pauli measure-
ments, and we show how these facts can be exploited to define a classical simulation algorithm for quantum
computation. We also demonstrate that this algorithm is efficient whenever the function representing the
input state is nonnegative and samples from this distribution can be obtained efficiently. In Section 6, we
show how the CNC construction relates to the Λ-polytope model [37, 38], a probabilistic representation of
quantum computation with magic states. Finally, in Section 7, we conclude with a discussion of the im-
plications of our results for the classical-to-quantum transition in QCM and propose directions for future
research.
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|H〉 • SX T |ψ〉

|ψ〉 ✌
✌✌

Figure 1: Implementation of a T gate by injection of a magic state [45, §10.2.5]. Only stabilizer operations
(Clifford gates, Pauli measurements, and classical conditioning) are used, but by including the magic input
state |H〉 := 1√

2

(
|0〉+ eiπ/4 |1〉

)
, we can effectively implement a non-Clifford T gate on the data qubit |ψ〉.

2 Background

In this section, we provide some background information. First, in Section 2.1 we define the model of
quantum computation that we are primarily working with, namely, quantum computation with magic states
(QCM), and we introduce some necessary notation surrounding it. Then, in Section 2.2 we review previous
quasiprobability representations for quantum computation, including the Wigner function for odd-prime-
dimensional qudits.

2.1 Quantum computation with magic states

Quantum computation with magic states (QCM) [44] is a universal model of quantum computation in which
the allowed operations are restricted to the stabilizer operations—Clifford gates and Pauli measurements,
possibly with classical side-processing and adaptivity. When acting on computational basis states, these
operations are not universal for quantum computation, and any circuit consisting of only these operations
can be efficiently simulated on a classical computer [41–43]. Normally, in the circuit model, universality
requires additional operations such as T gates [45].

In the magic state model, universality is restored by the inclusion of additional “magic” input states.
These are nonstabilizer states included as additional inputs to the quantum circuit, which allow for the
implementation of nonstabilizer operations. See Figure 1 for an example of the implementation of a non-
Clifford T gate by injection of a magic state, which proves universality of the model. Of course, without the
capacity to perform non-Clifford gates, it’s not obvious that these magic states can be prepared. Fortunately,
magic state distillation protocols have been discovered, which consume many copies of noisy magic states and
return fewer copies of the magic states with higher purity [44]. This scheme is one of the leading candidates
for scalable fault-tolerant quantum computation [46].

2.1.1 Pauli-based quantum computation

Another closely related model of computation is Pauli-based quantum computation (PBC) [47–49]. This
model is similar the magic state model, except that the operations are restricted even further without sacri-
ficing computational universality. A Pauli-based quantum computation on n qudits consists: (1) preparation
of an initial n-qudit magic state (an n-fold tensor product of a fixed single-qudit magic state suffices), followed
by (2) a sequence of pair-wise commuting Pauli measurements of length at most n.

Note that the measurement sequence is not necessarily determined in advance. Measurements can depend
on the outcomes of previous measurements and classical randomness, and they are determined on the fly
via classical side-processing. See Refs. [48, 49] for more information on this model. Since this model can be
obtained from the magic state model by imposing further restrictions on the operations and states that we
allow, all of our results applying to the magic state model also apply to Pauli-based quantum computation.

2.1.2 Notation for the stabilizer formalism

Here we introduce some notation surrounding the stabilizer formalism for qubits and for odd-prime-
dimensional qudits. Most of the focus of this paper will be on systems of n qudits, each with Hilbert space
dimension d where d is an odd prime. But it will also be informative to compare against the case of multiple
qubits (d = 2), so in this section we introduce notation for qudits of any prime dimension d. The case of
composite qudit Hilbert space dimension is somewhat more complicated. The difference between prime and
composite dimensions is partially addressed elsewhere, for example see Refs. [11, 20, 38, 50].
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Up to overall phases, Pauli operators can be idenitided with elements of the vector space Z2n
d [11]. We

fix a phase convention for the Pauli operators to be






Ta = i−〈az|ax〉
n⊗

k=1

Zaz[k]Xax[k], if d = 2,

Ta = ω−〈az|ax〉·2−1
n⊗

k=1

Zaz[k]Xax[k], if d is an odd prime,

(1)

for each a = (az , ax) ∈ Zn
d × Zn

d =: E. Here ω := exp(2πi/d) is a primitive dth root of unity. The exponent
in the first case, −〈az|ax〉, is computed mod 4, and in the second case, −〈az|ax〉 · 2

−1 is computed in Zd.
The local Pauli operators are the d-dimensional generalization of the qubit Pauli operators, given by

X =
∑

j∈Zd

|j + 1〉 〈j| and Z =
∑

j∈Zd

ωj |j〉 〈j| . (2)

The symplectic product [·, ·] : E × E → Zd, defined as [a, b] := 〈az|bx〉 − 〈ax|bz〉, computes the commutator
of the Pauli operators through

[Ta, Tb] := TaTbT
−1
a T−1

b = ω[a,b], ∀a, b ∈ E. (3)

When [a, b] = 0, we say a and b are orthogonal with respect to the symplectic inner product. For orthogonal
a, b, we sometimes also say a and b commute, since in this case the corresponding Pauli operators Ta and
Tb commute. For a set of labels of Pauli operators A ⊂ E, the orthogonal complement of A, is the the set
A⊥ := {b ∈ E | [a, b] = 0 ∀a ∈ A}. I.e., this is the set of all labels of Pauli operators that commute with
every Pauli operator in A. For an element a ∈ E, we will denote a⊥ := {a}⊥ the set of labels of Pauli
operators that commute with a.

We define a Zd-valued function β that tracks how commuting Pauli operators compose through the
relation

TaTb = ω−β(a,b)Ta+b, ∀a, b ∈ E such that [a, b] = 0. (4)

In the case where d is odd, with the phase convention chosen in Eq. (1), β(a, b) = 0 for all orthogonal
a, b ∈ E. For d = 2, no phase convention with this property exists [18, 20].

The Clifford group, Cℓ, is a subgroup of the unitary group consisting of operators that map Pauli operators
to Pauli operators (up to overall phases) under conjugation. The Clifford group acts on the Pauli operators
by conjugation as

gTag
† = ωΦg(a)TSga, ∀g ∈ Cℓ, a ∈ E, (5)

where Sg ∈ Sp(E) is a symplectic map on E [11], and the function Φg : E → Zd, defined by this equation,
tracks the extra phases on the Pauli operators that get picked up through this action.

A Pauli measurement is specified by a label a ∈ E of a Pauli observable. The probability of obtaining
measurement outcome ωr(a) is given by the Born rule P (r(a)|a) = Tr(ρΠr

a) where

Πr
a :=

1

d

∑

j∈Zd

ω−jr(a)T j
a (6)

is the projector onto the eigenspace of Ta corresponding to eigenvalue ωr(a), r(a) ∈ Zd. More generally, we
could measure any set of pair-wise commuting elements of E simultaneously. In the symplectic vector space
picture, this corresponds to measuring an isotropic subspace of E, i.e., a subspace I of the vector space E
on which the symplectic form vanishes, I ⊂ I⊥. Then the corresponding projector is

Πr
I :=

1

|I|

∑

a∈I

ω−r(a)Ta (7)

where again the probability of obtaining the measurement outcomes
{
ωr(a) | a ∈ I

}
is given by the Born

rule, P (r|I) = Tr(ρΠr
I). For consistency, the measurement outcomes must satisfy

ω−r(a)−r(b)TaTb = ω−r(a+b)Ta+b, (8)

or, equivalently,
r(a) + r(b) − r(a+ b) = −β(a, b). (9)
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2.2 Quasiprobability representations

The term quasiprobability representation means different things to different people. For example, some
define quasiprobability representations as representations satisfying the Stratonowich-Weyl criteria [3, 6], or
finite-dimensional generalizations thereof [20]. Others admit only frame representations [51, 52]. See, for
example, Refs. [8, 20, 53, 54] for other types of quasiprobability representations in physics, and in particular,
quasiprobability representations for finite-dimensional quantum theory.

Here we impose very few restrictions on the types of quasiprobability representations we allow. We impose
only the constraints required for the representation to be useful for describing quantum computations. Denote
by Herm(H) the real vector space of Hermitian operators on Hilbert space H. We start by defining a finite
set of operators {Aα | α ∈ V} on the n-qudit Hilbert space (Cd)⊗n ≃ Cdn

, with the following properties:

(QR1) A†
α = Aα, ∀α ∈ V ,

(QR2) Tr(Aα) = 1, ∀α ∈ V ,

(QR3) Span({Aα | α ∈ V}) = Herm(H).

As a result of property (QR3), any n-qudit quantum state represented by a density matrix ρ can be expanded
in these operators as

ρ =
∑

α∈V
Qρ(α)Aα. (10)

From (QR1), the expansion coefficients are real for Hermitian operators, and with (QR2), taking a trace of
this equation we obtain 1 =

∑

α∈V Qρ(α). This is the motivation for the term quasiprobability, the function
Qρ : V → R looks like a probability distribution over the generalized phase space V , except for the fact that
it can take negative values. This function is how we represent states.

In order to describe quantum computations, we will be interested only in quasiprobability representa-
tion which are closed under the dynamics of quantum computation with magic states—Clifford gates and
Pauli measurements. Therefore, we consider only quasiprobability representations satisfying the following
additional constraints.

(QR4) For any Clifford group element g ∈ Cℓ, gAαg
† = Ag·α with g · α ∈ V

(QR5) For any Pauli measurement a ∈ E and any measurement outcome s ∈ Zd, we have

Πs
aAαΠ

s
a =

∑

β∈V
qα,a(β, s)Aβ (11)

with qα,a(β, s) ≥ 0, ∀α, a, β, s and
∑

β,s qα,a(β, s) = 1.

That is, according to (QR4) Clifford operations are represented by a deterministic update map α 7→ g·α on the
phase space, and according to (QR5) Pauli measurements are represented by a stochastic map qα,a. Once the
operators {Aα}α∈V are defined, the quasiprobability representation is determined, with Qρ in Eq. (10) giving
the representation of states, and (QR4) and (QR5) giving the representation of computational dynamics.

2.2.1 The Wigner function

Gross’ discrete Wigner function [11–13] is a quasiprobability representation that has proven particularly
effective at describing quantum computation on odd-dimensional qudits. The phase space of the Wigner
function for odd-dimensional qudits is V := Z2n

d , i.e., it is isomorphic to the labels of the Pauli operators.
To each phase space point, we identify a phase space point operator defined as

Au =
1

dn

∑

b∈E

ω[u,b]Tb, ∀u ∈ Z2n
d =: V. (12)

These operators are orthogonal, Tr(AuAv) = dnδu,v, and they form a basis for Herm(H). The Wigner
function of a state ρ is defined as

Wρ(u) =
1

dn
Tr(ρAu), ∀u ∈ V. (13)
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These values are equal to the expansion coefficients in the expression ρ =
∑

u∈V Wρ(u)Au.
This representation satisfies (QR4) and (QR5), in addition to (QR1)–(QR3). In particular, the Clifford

group acts on the phase space point operators by conjugation as

gAug
† = ASgu+ag

(14)

where Sg ∈ Sp(V ) is a symplectic map on V , and ag ∈ Z2n
d [11–13]. As a result, the Wigner function is

Clifford covariant, Wgρg† (Sgu + ag) = Wρ(u). For any Pauli measurement a ∈ E and any measurement
outcome s ∈ Zd, we have







Tr(Πs
aAu) = 1 and Πs

aAuΠ
s
a = 1

|Γa,u|
∑

w∈Γa,u

Aw, if s = [a, u],

Tr(Πs
aAu) = 0 and Πs

aAuΠ
s
a = 0, otherwise,

(15)

where Γa,u = {w ∈ E | [w, v] = [u, v] ∀v ∈ a⊥} [22].
These updates under Clifford gates and Pauli measurements provide a classical simulation algorithm for

quantum computation with magic states based on sampling, Algorithm 1. Further, these state updates can
be computed efficiently on a classical computer. Therefore, whenever the input state of a QCM circuit has
a nonnegative representation, and this distribution can be efficiently sampled from, the entire computation
can be efficiently simulated classically. This proves that negativity of the Wigner function is a necessary
condition for a quantum computational advantage in QCM. This is a restatement of the main result from
Ref. [15]. For a more complete description of this formulation of the result, see Ref. [22, §2].

Input: Wρ(u); a Clifford+Pauli circuit C
1: sample a point u ∈ V according to the probability distribution Wρ

2: while end of circuit has not been reached do

3: if a Clifford gate g ∈ Cℓ is encountered then

4: update u 7→ Sgu+ ag
5: end if

6: if a Pauli measurement Ta, a ∈ E is encountered then

7: return ω[a,u] as the outcome of the measurement
8: sample w uniformly from Γa,u

9: update u 7→ w
10: end if

11: end while

Algorithm 1: A single run of the classical simulation algorithm for quantum computation with magic states
based on sampling from the Wigner function. This algorithm applies only when the Wigner function of the
input state is nonnegative. The algorithm provides samples from the joint probability distribution of the
Pauli measurements in a quantum circuit consisting of Clifford gates and Pauli measurements applied to an
input state ρ.

3 The CNC phase space

In this section we define a generalized phase space picture that can be used for describing quantum compu-
tation with magic states on qudits of any dimension. This phase space was first introduced in Ref. [31], and
there it was characterized for the case of qubits. In this paper we primarily consider the case of odd-prime
dimensional qudits.

3.1 Definition of the phase space

Recall from Ref. [31] a few definitions.

Definition 1. A set Ω ⊂ E is closed under inference if for every pair of elements a, b ∈ Ω satisfying
[a, b] = 0, it holds that a+ b ∈ Ω.
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The closure under inference of a set Ω ⊂ E, denoted Ω, is the smallest subset of E which is closed under
inference and contains Ω. When using the language of the symplectic vector space E, we also refer to the
closure under inference of a set Ω as the orthogonal closure. This is related to what is called a partial closure
in Ref. [55].

Definition 2. A noncontextual value assignment for a set Ω ⊂ E is a function γ : Ω → Zd that satisfies

γ(a) + γ(b)− γ(a+ b) = −β(a, b) (16)

for all pairs a, b ∈ Ω such that [a, b] = 0. A set Ω ⊂ E is called noncontextual if there exists a noncontextual
value assignment for the set.1

As a result of the Mermin square proof of contextuality [34], the set E of all Pauli observables does not
satisfy Definition 2 when the qudit Hilbert space dimension is d = 2 and the number of qudits is n ≥ 2.
Similar proofs of contextuality can be constructed using the multiqudit Pauli observables on qudits of any
even dimension, but no such proofs exist for Pauli observables on odd-dimensional qudits [18, 20].

A set which is both closed under inference and noncontextual we call CNC for short. The CNC phase
space V consists of all pairs (Ω, γ) where Ω ⊂ E is a CNC set and γ : Ω → Zd is a noncontextual value
assignment. For any CNC set Ω and any noncontextual value assignment γ : Ω → Zd, we define a phase
space point operator

Aγ
Ω =

1

dn

∑

b∈Ω

ω−γ(b)Tb. (17)

These operators satisfy (QR1)–(QR3), i.e., they define a quasiprobability function where the representa-
tion of states is given by the coefficients in the expansion

ρ =
∑

(Ω,γ)∈V
Wρ(Ω, γ)A

γ
Ω. (18)

In Ref. [31] it was shown that for multiple qubits, this representation also satisfies (QR4) and (QR5). For
the case of odd dimensions, we return to the question of how the dynamics of QCM, Clifford gates and Pauli
measurements, are represented in the CNC model in Section 5.

3.2 Extremal phase space points

By including the CNC set Ω over which the noncontextual value assignments are defined as an extra varying
parameter, the phase space becomes much larger than one would expect for a Wigner function. As a result,
the representation of states in Eq. (18) is not unique. For the case of multiple qubits, when all pairs (Ω, γ)
are included, the phase space contains redundancy. It is convenient to reduce the size of the phase space by
eliminating this redundancy. This is achieved by the following lemma.

Lemma 1. A CNC set Ω ⊂ E is called maximal if it is not strictly contained in a larger CNC set. Let
VM denote the multiqubit phase space consisting of pairs (Ω, γ) where Ω is a maximal CNC set, and γ is a
noncontextual value assignment on Ω, satisfying Definitions 1 and 2. Then for any (Ω̃, γ̃) ∈ V where Ω̃ is
not maximal, there are nonnegative coefficients c(Ω, γ) ≥ 0 ∀(Ω, γ) ∈ VM such that

Aγ̃

Ω̃
=

∑

(Ω,γ)∈VM

c(Ω, γ)Aγ
Ω. (19)

Further, a multiqubit state ρ is positively representable with respect to V if and only if it is positively repre-
sentable with respect to VM .

The proof of this lemma was given first in Ref. [22, §3.3]. We include it here for completeness.

Proof of Lemma 1. For any CNC set Ω̃ and value assignment γ̃ on Ω̃, we have a phase space point
operator Aγ̃

Ω̃
. If Ω̃ is not a maximal set, then as a result of the classification of [31, Theorem 1], Ω̃ has the

form

Ω̃ =

ζ
⋃

k=1

〈ak, I〉 (20)

1For odd d, β ≡ 0, so the noncontextuality condition simplifies to γ(a) + γ(b) = γ(a + b) for all a, b such that [a, b] = 0.
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where I is an isotropic subspace of E, all ak commute with all elements of I, and all ak pair-wise anti-
commute. Also, Ω̃ is contained in a maximal CNC set

Ω =

ξ
⋃

k=1

〈ak, I〉 (21)

with the same commutation structure and with ξ > ζ. Define two value assignments γ0 and γ1 on Ω as
follows: γ0(b) = γ1(b) = γ(b) for each b ∈ Ω̃, and for each b ∈ {aζ+1, . . . , aξ}, define γ0(b) = 0 and γ1(b) = 1.

The values of γ0 and γ1 on the remaining elements of Ω \ Ω̃ are determined by Eq. (16). Then,

1

2
(Aγ0

Ω +Aγ1

Ω ) =
1

2n+1

∑

b∈Ω

(

(−1)γ0(b) + (−1)γ1(b)
)

Tb (22)

=
1

2n

∑

b∈Ω̃

(−1)γ(b)Tb +
1

2n+1

∑

b∈Ω\Ω̃

(

(−1)γ0(b) + (−1)γ1(b)
)

Tb (23)

For each b ∈ Ω \ Ω̃, we have one of two cases:
Case 1: If b ∈ {aζ+1, . . . aξ} then by definition γ0(b) = 0 and γ1(b) = 1.
Case 2: If b 6∈ {aζ+1, . . . aξ} then b = aj + g for some j ∈ {ζ + 1, . . . , ξ} and g ∈ I. Then, with all addition
mod 2, we have

γ0(b) = β(aj , g) + γ0(aj) + γ(g) = β(aj , g) + γ(g) (24)

and
γ1(b) = β(aj , g) + γ1(aj) + γ(g) = β(aj , g) + 1 + γ(g). (25)

In both cases, γ1(b) ≡ γ0(b) + 1 mod 2. Therefore, each term in the second sum in the expression above
vanishes and we have

1

2
(Aγ0

Ω +Aγ1

Ω ) =
1

2n

∑

b∈Ω

(−1)γ(b)Tb = Aγ̃

Ω̃
. (26)

If a state has a nonnegative representation with respect to VM , then clearly it has a nonnegative rep-
resentation with respect to V since VM ⊆ V . Conversely, if a state ρ has a nonnegative expansion with
respect to V with a positive coefficient on Aγ̃

Ω̃
, substituting the right hand side of Eq. (19) for Aγ̃

Ω̃
does

not introduce any negativity. Therefore, if a state is positively representable with respect to V then it is
positively representable with respect to VM . �

This lemma relies on the fact that any noncontextual value assignment on Ω̃ can be extended to a
noncontextual value assignment on the larger CNC set Ω. This is true for qubits, but in general this
extension is not possible for higher dimensional qudits. See Ref. [36] for an example of where this fails.

The only maximal CNC set for odd-dimensional qudits is the full set of Pauli observables E. If we were
to restrict the phase space to include only maximal CNC sets, for n ≥ 2 we obtain exactly the phase space of
the Wigner function [33]. But since Lemma 1 fails for odd-dimensional qudits, we cannot restrict to maximal
CNC sets without losing expressibility in terms of the quantum states that are postitively representable. In
the next section we characterize all CNC phase space points for odd-prime-dimensional qudits. The phase
space includes the phase space points of the Wigner function, but it also includes pairs (Ω, γ) where Ω ( E
where γ cannot be extended to a noncontextual value assignment on E.

4 Characterization of phase space points

Our goal in this section is to characterize the CNC phase space for odd-prime-dimensional qudits, as was
achieved for the case of qubits in Ref. [31, §IV]. This requires characterizing all pairs (Ω, γ), where Ω ⊂ E
is a CNC set and γ : Ω → Zd is a noncontextual value assignment for Ω, since points in the phase space are
identified with these pairs. To start, we characterize the CNC sets.
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4.1 Characterization of CNC sets

Note that there are no state-independent proofs of contextuality like the Mermin square [34] using only
odd-dimensional Pauli observables [18–20]. Therefore, for the purpose of characterizing CNC sets, we can
ignore the noncontextuality condition of Definition 2, and focus only on the closure under inference condition,
Definition 1. We now characterize the sets Ω ⊂ E that are closed under inference. A similar characterization
for the case d = 2 has already been found [31, 39, 56]. For the case of odd prime d, this is achieved by the
following theorem.

Theorem 1. For any number of qudits n of any odd prime dimension d, a set Ω ⊂ E is closed under
inference if and only if

(i) Ω is a subspace of E (i.e. Ω is closed under the addition), or

(ii) Ω has the form

Ω =

ξ
⋃

k=1

〈ak, I〉 (27)

where I ⊂ E is an isotropic subspace and the generators a1, . . . , aξ satisfy [ai, aj ] 6= 0 for all i 6= j, and
ai ∈ I⊥ for all i ∈ {1, . . . , ξ}.

The proof of this theorem requires a couple of lemmas.

Lemma 2. Let Ω ⊂ E be a subspace and v ∈ E. Then Ω ∪ {v} has the form Eq. (27) if and only if Ω ∩ v⊥

is isotropic. Otherwise, Ω ∪ {v} = 〈v,Ω〉.

Lemma 3. Suppose Ω ⊂ E has the form Eq. (27), and v ∈ E. Then Ω ∪ {v} has the form Eq. (27), or it is
a subspace.

The proofs of these lemmas are in Appendix A.

Proof of Theorem 1. It is easy to verify that subspaces and sets of the form Eq. (27) are closed under
inference. The proof for the d = 2 case is given by Lemma 3 of Ref. [31]). The proof is identical for the case
of odd prime d. Here we focus on the other direction, that every set that is closed under inference is either
a subspace or has the form described by Eq. (27).

The overall proof strategy is induction. For the base case, start with one element u ∈ E. Obviously
{u} = 〈u〉, which is simultaneously a subspace and of the form Eq. (27). In the induction step, suppose
that a set Ω ⊂ E is a subspace or of the form (27). Then we show that for all v ∈ E the orthogonal closure
Ω ∪ {v} is again a subspace or of the form (27). The induction step follows immediately from Lemmas 2
and 3. �

4.2 Maximal size of cnc sets

For a set Ω of the form Eq. (27), once the isotropic subspace I is fixed, the elements a1, . . . , aξ are chosen

from I⊥/I ≃ Z2(n−dim(I))
d . Then the size of the set is (ξd − ξ + 1) · ddim(I). That is, it depends on the

value of ξ, which is bounded by the maximal number of mutually non-orthogonal elements in Z2(n−dim(I))
d .

The maximal number of mutually non-orthogonal elements in Z2n
d is unknown [57], but we can prove that

it is at least dn + 1.2 This can be seen as a generalization of the corresponding qubit construction in [31,
Theorem 1].

Let e1, . . . , en, f1, . . . fn be the standard basis of the symplectic vector space En ≃ Z2n
d ([ei, ej ] = 0,

[fi, fj ] = 0, and [ei, fj] = δi,j). The space E1 can be decomposed into d+1 mutually non-orthogonal lines as

E1 = 〈c1〉 ∪ · · · ∪ 〈cd+1〉, [ci, cj ] 6= 0 for all i 6= j. (28)

2In order to prove efficiency of the classical simulation algorithm in Section 5, we need the number ξ of the noncommuting
generators of the CNC sets to be polynomial in the number n of qudits. We expect the maximal number of pair-wise noncom-
muting elements in Z2n

d
to be bounded by a polynomial in n, but as noted this has not been proven. If it turns out that this

conjecture is false, then in order for the algorithm to be efficient we must explicitly impose a polynomial bound on the value ξ
for the admissible CNC phase space points used in the simulation. See Section 5 for details.
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For example, such a decomposition if given by

E1 = 〈e1〉 ∪ 〈f1〉 ∪ 〈e1 + f1〉 ∪ 〈e1 + 2f1〉 ∪ · · · ∪ 〈e1 + (d− 1)f1〉. (29)

This gives rise to the following construction for any n ∈ N (which is in a sense a generalization of the
construction given in [31, eqs. (16), (17)]). Labeling the elements of En by (u1, . . . , un) with ui ∈ E1 for
i = 1, . . . , n. We have the following construction of dn+ 1 mutually nonorthogonal lines,







(c1, 0, . . . , 0), (c2, 0, . . . , 0), . . . , (cd, 0, . . . , 0),

(cd+1, c1, 0 . . . , 0), (cd+1, c2, 0, . . . , 0), . . . , (cd+1, cd, 0, . . . , 0),

(cd+1, cd+1, c1, 0 . . . , 0), (cd+1, cd+1, c2, 0, . . . , 0), . . . , (cd+1, cd+1, cd, 0, . . . , 0),
...

(cd+1, cd+1 . . . , cd+1, c1), (cd+1, cd+1 . . . , cd+1, c2), . . . , (cd+1, cd+1 . . . , cd+1, cd),

(cd+1, cd+1 . . . , cd+1, cd+1).

(30)

It is straightforward to check that all of the given generators are mutually non-orthogonal. The symplectic
inner product of two generators in the same row above is proportional to [ci, cj ] 6= 0 for all i 6= j. The
symplectic inner product of two elements that lie in different rows above will be proportional to [ci, cd+1] 6= 0
for some i ∈ {1, . . . , d}.

4.3 Characterization of noncontextual value assignments on CNC sets

Theorem 1 gives a characterization of all CNC sets Ω. With a characterization of the noncontextual value
assignments γ on Ω, we obtain a characterization of the phase space V . The proof of [31, Lemma 2] can be
adapted to show that the value assignments are a coset of a vector space, and in fact, since β ≡ 0 in odd
dimensions, they are a vector space. This characterization can be made more explicit.

First, for the case Ω = E with n ≥ 2, Ref. [33, Lemma 1] gives a characterization of the value assignments.
The value assignments γ : Ω → Zd are linear functions (equivalently, ωγ(·) are characters of Ω). When Ω is
a subspace of E, the restriction of these characters to Ω are still value assignments. The single-qudit case
is an exception, with more value assignments than characters (see [33, §3.4]). Second, in the case Ω has the
form Eq. (27) with ξ ≥ 2, we can describe the value assignments as follows. The value assignment γ can be
chosen freely on a1, . . . , aξ, as well as on a basis for I. Then the value of γ on the rest of Ω is determined
through Eq. (16).

If a value assignment on Ω happens to be linear, then it can be extended by linearity to a value assignment
on E of all Pauli operators. In this case, Lemma 1 can be adapted to show that the corresponding phase
space point (Ω, γ) is redundant (the proof given in [31, Lemma 1] holds). But if γ is not linear on Ω,
then it cannot be extended to a value assignment on E, and the phase space point (Ω, γ) is not necessarily
redundant. See Ref. [36] for an example of a phase space point (Ω, γ) with a nonlinear value assignment γ.
Therefore, there exist phase space points in the CNC construction that do not correspond to phase space
points of Gross’ Wigner function or convex mixtures thereof, namely, those with Ω ( E and nonlinear value
assignments γ : Ω → Zd.

5 Extended classical simulation algorithm

In this section we show that the CNC construction provides a classical simulation algorithm for quantum
computation with magic states. To start we have show how CNC-type phase space point operators are
updated under Clifford gates and Pauli measurements, and from these update rules, the classical simulation
algorithm follows. It is given explicitly in Algorithm 2. Furthermore, with the characterization of the phase
space given in Section 4, we are able to show that the update of phase space points under Clifford gates and
Pauli measurements can be computed efficiently classically. This is the result of Theorem 2.
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5.1 State update under Clifford gates

Using the action of the Clifford group on the Pauli operators in Eq. (5), for every CNC set Ω, each noncon-
textual value assignment γ : Ω → Zd, and every Clifford group element g ∈ Cℓ, we introduce the derived
objects

g · Ω := {Sga | a ∈ Ω} (31)

and g · γ : g · Ω → Zd defined by

g · γ(Sgb) = γ(b)− Φg(b), ∀b ∈ Ω. (32)

Lemma 4. If Ω ⊂ E is CNC and γ : Ω → Zd is a noncontextual value assignment for Ω, then for any
Clifford group element g ∈ Cℓ,

gAγ
Ωg

† = Ag·γ
g·Ω, (33)

where g · Ω is CNC and g · γ is a noncontextual value assignment for g · Ω.

Proof of Lemma 4. For any a, b ∈ g ·Ω with [a, b] = 0, there exist c, d ∈ Ω such that a = Sgc and b = Sgd,
and since Sg ∈ Sp(E), [c, d] = 0. Since Ω is closed under inference, c+d ∈ Ω, therefore, Sg(c+d) = a+b ∈ g·Ω.
Thus, g ·Ω is closed under inference. g ·γ satisfies Eq. (16) by Lemma 4 in Ref. [18]. Therefore, g ·γ : g ·Ω → Zd

is a noncontextual value assignment for g · Ω.
Finally, we calculate

gAγ
Ωg

† =
1

dn

∑

b∈Ω

ω−γ(b)gTbg
† (34)

=
1

dn

∑

b∈Ω

ω−γ(b)+Φg(b)TSgb (35)

=
1

dn

∑

b∈g·Ω
ω−g·γ(b)Tb = Ag·γ

g·Ω (36)

and we obtain the final statement of the lemma. �

This lemma shows that the CNC phase space is closed under the action of the Clifford group. As a result,
the corresponding quasiprobability function is Clifford covariant.

Corollary 1. For any quantum state ρ and any Clifford group element g ∈ Cℓ, there exists a representation
of the state gρg† satisfying Wgρg† (g · Ω, g · γ) =Wρ(Ω, γ) for all (Ω, γ) ∈ V.

The proof of this corollary follows immediately by conjugating the expression Eq. (18) by a Clifford group
element g ∈ Cℓ. This also implies that the negativity in the representation does not increase under Cliffords.

Corollary 2. Suppose a state ρ has an expansion as in Eq. (18) such that Wρ(Ω, γ) ≥ 0 for all (Ω, γ) ∈ V.
Then for any Clifford group element g ∈ Cℓ, there exists an expansion of gρg† such that Wgρg† (Ω, γ) ≥ 0 for
all (Ω, γ) ∈ V.

5.2 State update under Pauli measurements

Lemma 5. Let Ω ⊂ E be a CNC set and γ : Ω → Zd be a noncontextual value assignement for Ω. Then for
any isotropic subspace I ⊂ E with any noncontextual value assignment r : I → Zd, either

(I) Tr(Πr
IA

γ
Ω) = 0 and Πr

IA
γ
ΩΠ

r
I = 0, or

(II) Tr(Πr
IA

γ
Ω) > 0 and

Πr
IA

γ
ΩΠ

r
I

Tr(Πr
IA

γ
Ω)

= Aγ×r
I+Ω∩I⊥ (37)

where I + Ω ∩ I⊥ is CNC and γ × r : I + Ω ∩ I⊥ → Zd is the unique noncontextual value assignment
for I +Ω ∩ I⊥ satisfying γ × r|I = r and γ × r|Ω∩I⊥ = γ|Ω∩I⊥ .
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Proof of Lemma 5. The proof is similar to the third part of the proof of Theorem 1 in Ref. [38] and to
the proof of Lemma 7 in Ref. [38], the difference being here Aγ

Ω is not in general a stabilizer code projector.
We have

Tr(Πr
IA

γ
Ω) =

1

dn|I|

∑

a∈I

∑

b∈Ω

ω−r(a)−γ(b)Tr(TaTb) (38)

=
1

dn|I|

∑

a∈I

∑

b∈Ω∩I⊥

ω−r(a)−γ(b)Tr(TaTb) +
∑

a∈I

∑

b∈Ω\(Ω∩I⊥)

ω−r(a)−γ(b)Tr(TaTb) (39)

The second sum vanishes because I is isotropic so I and Ω \ (Ω ∩ I⊥) are disjoint, therefore, Tr(TaTb) = 0
for all a ∈ I, b ∈ Ω \ (Ω ∩ I⊥). Continuing with the first sum we have

Tr(Πr
IA

γ
Ω) =

1

dn|I|

∑

a∈I

∑

b∈Ω∩I⊥

ω−r(a)−γ(b)Tr(TaTb) (40)

=
1

|I|

∑

a∈Ω∩I

ω−r(a)−γ(−a) (41)

=
1

|I|

∑

a∈Ω∩I

ω−r(a)+γ(a). (42)

Here we have two cases. First, if r|Ω∩I 6= γ|Ω∩I , then by orthogonality of twisted characters [58], we have
Tr(Πr

IA
γ
Ω) = 0. Second, if r|Ω∩I = γ|Ω∩I then

Tr(Πr
IA

γ
Ω) =

1

|I|

∑

a∈Ω∩I

ω−r(a)+γ(a) =
|Ω ∩ I|

|I|
> 0. (43)

Therefore, either Tr(Πr
IA

γ
Ω) = 0, or Tr(Πr

IA
γ
Ω) > 0.3 Here we have two cases.

(I) In the first case, we must show that Πr
IA

γ
ΩΠ

r
I = 0. For any Pauli operator Ta, a ∈ E, consider the

inner product Tr(TaΠ
r
IA

γ
ΩΠ

r
I). Here we have three subcases. (i) First, if a ∈ I then

TaΠ
r
I =

1

|I|

∑

b∈I

ω−r(b)TaTb (44)

=
1

|I|

∑

b∈I

ω−r(b)−β(a,b)Ta+b (45)

=
1

|I|

∑

b∈I

ωr(a)−r(a+b)Ta+b (46)

=ωr(a)Πr
I . (47)

Therefore,
Tr(TaΠ

r
IA

γ
ΩΠ

r
I) = ωr(a)Tr(Πr

IA
γ
Ω) = 0. (48)

(ii) Second, if a ∈ I⊥ \ I, then by Lemma 5 of Ref. [38]

Πr
I =

∑

r′∈Γ
〈I,a〉
I,r

Πr′

〈I,a〉 (49)

where Γ
〈I,a〉
I,r is the set of noncontextual value assignments on 〈I, a〉 satisfying r′|I = r. Multiplying this

equation by Aγ
Ω and taking a trace we get

Tr(Πr
IA

γ
Ω) =

∑

r′∈Γ
〈I,a〉
I,r

Tr
(

Πr′

〈a,I〉A
γ
Ω

)

. (50)

3This implies the operators Aγ
Ω

are contained in the Λ polytopes of Refs. [37, 38].
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The left hand side is zero by assumption. As shown above, each term on the right hand side is nonnegative,

therefore each term on the right hand side is zero, i.e. Tr
(

Πr′

〈a,I〉A
γ
Ω

)

= 0 for all r′ ∈ Γ
〈a,I〉
I,r .

We can write the spectral decomposition of Ta as

Ta =
∑

r′∈Γ
〈a,I〉
I,r

ωr(a)Π
r′|〈a〉

〈a〉 . (51)

Then

Tr(TaΠ
r
IA

γ
ΩΠ

r
I) =

∑

r′∈Γ
〈a,I〉
I,r

ωr′(a) Tr
(

Π
r′|〈a〉

〈a〉 Πr
IA

γ
ΩΠ

r
I

)

=
∑

r′∈ΓI,r

ωr′(a) Tr
(

Πr′

〈a,I〉A
γ
Ω

)

= 0. (52)

(iii) Third, if a /∈ I⊥ then

Πr
ITaΠ

r
I =

1

|I|2

∑

b,c∈I

ω−r(b)−r(c)TbTaTc (53)

=
1

|I|2

∑

b,c∈I

ω−r(b)−r(c)+[b,a]−β(b,c)TaTb+c (54)

=
1

|I|2
Ta

∑

b,c∈I

ω−r(b+c)+[b,a]Tb+c (55)

=
1

|I|
TaΠ

r
I

∑

b∈I

ω[b,a]. (56)

By character orthogonality, the sum in the final expression vanishes. Therefore,

Tr(TaΠ
r
IA

γ
ΩΠ

r
I) = Tr(Πr

ITaΠ
r
IA

γ
Ω) = 0. (57)

Thus, Tr(TaΠ
r
IA

γ
ΩΠ

r
I) = 0 for all Pauli operators Ta, a ∈ E, and so Πr

IA
γ
ΩΠ

r
I = 0.

(II) In the second case, Tr(Πr
IA

γ
Ω) > 0, as shown above we have r|Ω∩I = γ|Ω∩I . Then

Πr
IA

γ
ΩΠ

r
I =

1

|I|dn

∑

b∈Ω

∑

c∈I

ω−γ(b)−r(c)Πr
ITbTc (58)

=
1

|I|dn

∑

b∈Ω

∑

c∈I

ω−γ(b)−r(c)+[b,c]Πr
ITcTb (59)

=
1

|I|dn

∑

b∈Ω

∑

c∈I

ω−γ(b)+[b,c]Πr
ITb (60)

=
1

|I|dn
Πr

I

∑

b∈Ω

[
∑

c∈I

ω[b,c]

]

ω−γ(b)Tb (61)

=
1

dn
Πr

I

∑

b∈Ω∩I⊥

ω−γ(b)Tb (62)

=
1

|I|dn

∑

a∈I

∑

b∈Ω∩I⊥

ω−r(a)−γ(b)TaTb (63)

=
1

|I|dn

∑

a∈I

∑

b∈Ω∩I⊥

ω−r(a)−γ(b)−β(a,b)Ta+b (64)

Here each Pauli operator in the sum has the same multiplicity. For any c ∈ I + Ω ∩ I⊥, let µ(c) denote the
number of pairs (a, b) ∈ I ×Ω∩ I⊥ such that a+ b = c. We will show that µ(c) = µ(0) for all c ∈ I +Ω∩ I⊥.
First, suppose (a1, b1), (a2, b2), . . . , (aµ(c), bµ(c)) are µ(c) distinct pairs in I × Ω ∩ I⊥ such that aj + bj = c.

Then the pairs (aj − a1, bj − b1) ∈ I × Ω ∩ I⊥ for j = 2, 3, . . . , µ(c), together with the pair (0, 0) show
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that µ(0) ≥ µ(c) for any c ∈ I + Ω ∩ I⊥. Now let (a1, b1), (a2, b2), . . . , (aµ(0), bµ(0)) be distinct pairs in

I × Ω ∩ I⊥ such that aj + bj = 0, and let (a, b) be such that a + b = c. Then the pairs (aj + a, bj + b) for
j = 1, 2, . . . , µ(0) show that µ(c) ≥ µ(0) for any c ∈ I + Ω ∩ I⊥. Thus, µ(c) = µ(0) for any c ∈ I +Ω ∩ I⊥.
We have µ(0) = |Ω ∩ I|.

The noncontextual value assignment γ×r : I+Ω∩I⊥ → Zd satisfying γ×r|I = r and γ×r|Ω∩I⊥ = γ|Ω∩I⊥

is uniquely defined. Then

Πr
IA

γ
ΩΠ

r
I =

|Ω ∩ I|

|I|dn

∑

a∈I+Ω∩I⊥

ω−γ×r(a)Ta =
|Ω ∩ I|

|I|
Aγ×r

I+Ω∩I⊥ (65)

Thus
Πr

IA
γ
ΩΠ

r
I

Tr(Πr
IA

γ
Ω)

= Aγ×r
I+Ω∩I⊥ (66)

which concludes the proof of the lemma. �
For a single Pauli measurement, I = 〈a〉 for some a ∈ E, this lemma simplifies with the following corollary.

Corollary 3. Let (Ω, γ) ∈ V be a CNC pair. Then for any a ∈ E,

(I) if a ∈ Ω, then

{

Tr(Πs
aA

γ
Ω) = 1 and Πs

aA
γ
ΩΠ

s
a = A

γ|
Ω∩a⊥

Ω∩a⊥ if s = γ(a),

Tr(Πs
aA

γ
Ω) = 0 and Πs

aA
γ
ΩΠ

s
a = 0 if s 6= γ(a).

(II) if a /∈ Ω, then Tr(Πs
aA

γ
Ω) = 1/d for each s ∈ Zd, and Πs

aA
γ
ΩΠ

s
a = 1

dA
γ×s
〈a〉+Ω∩a⊥ .

5.3 Classical simulation algorithm

The update rules of the phase space points under Clifford gates and Pauli measurements given in Sections 5.1
and 5.2 allow us to introduce a classical simulation algorithm for quantum computation with magic states.
This simulation is given explicitly in Algorithm 2. The proof of correctness of this algorithm is analogous to
the proofs of [31, Theorem 3], [37, Theorem 2], and [38, Theorem 2].4

Input: Wρ(Ω, γ); a Clifford+Pauli circuit C
1: sample a point (Ω, γ) ∈ V according to the probability distribution pρ
2: while end of circuit has not been reached do

3: if a Clifford unitary g ∈ Cℓ is encountered then

4: update (Ω, γ)  (g · Ω, g · γ)
5: end if

6: if a Pauli measurements Ta, a ∈ E is encountered then

7: if a ∈ Ω then

8: set s = γ(a)
9: update (Ω, γ)  (Ω ∩ a⊥, γ|Ω∩a⊥)

10: else if a 6∈ Ω then

11: choose a random s ∈ Zd distributed uniformly
12: update (Ω, γ)  (〈a〉+Ω ∩ a⊥, γ × s)
13: end if

14: Output: s as the outcome of the measurement
15: end if

16: end while

Algorithm 2: One run of the classical simulation algorithm for quantum computation with magic states. The
algorithm provides samples from the joint probability distribution of the Pauli measurements in a quantum
circuit consisting of Clifford gates and Pauli measurements applied to an input state ρ.

4One difference between the simulation Algorithm 2 and that of Ref. [31] is there only extremal (in the sense of Lemma 1)
CNC phase space points are used. Clifford gates preserve the property of extremality and after each Pauli measurement the
resulting post-measurement state Πs

aA
γ
Ω
Πs

a/Tr
(

Πs
aA

γ
Ω

)

is decomposed as a convex combination of extremal CNC phase space
point operators, c.f. [31, Equation 26]. On the other hand, in our case we allow nonextremal CNC points to appear in the
simulation, this does not affect the proof of correctness of the algorithm.
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5.4 Efficiency of classical simulation

In the case of the multiqubit CNC construction, the classical simulation algorithm [31, Table 1] is efficient
on states with a nonnegative quasiprobability function Wρ. The proof of this fact relies on the structure of
the multiqubit CNC phase space points found in [31, §IV]. With the structure of the phase space found in
Section 4, an adaptation of the proof of efficiency should apply to our case, with one caveat. Namely, for
multiple qubits, the maximum number of pair-wise noncommuting Pauli operators on n qubits is known to
be 2n+1. In particular, it is linear in the number of qubits. For odd-prime-dimensional qudits, a polynomial
bound on this number is not known, the best known upper bound is exponential in the number of qudits
n [57]. If there were to exist sets of noncommuting Pauli operators of size exponential in n, the classical
updates of the CNC phase space points would not be efficiently computable classically.

Let Ṽ denote a subset of the CNC phase space defined by the additional constraint that the CNC sets
have a set of generators (consisting of a basis in case of a subspace of E, or a basis of I together with the
noncommuting generators a1, . . . , aξ in the case of Eq. (27), c.f. Theorem 1) that has size polynomial in the
number of qudits. The state updates under Clifford gates and Pauli measurements described in Lemmas 4
and 5 (lines 4, 9, and 12 of Algorithm 2) do not increase the number of generators needed to specify a
CNC set, so Ṽ is closed under these operations. With respect this this phase space Ṽ, we have the following
theorem.

Theorem 2. For any number of qudits n of any odd prime Hilbert space dimension d,

1. The update of phase space points Ṽ under Clifford gates given by Lemma 4 can be computed in time
polynomial in the number of qudits.

2. The update of phase space points Ṽ under Pauli measurements given by Lemma 5 can be computed in
time polynomial in the number of qudits.

The proof of Theorem 2 is analogous to the proof of Theorem 3 in Ref. [31]. Basically, with the charac-
terization of phase space points in Section 4, for any phase space points (Ω, γ), the set Ω can be identified
by a small number of vectors in Z2n

d . Namely, if Ω is a subspace of E then we identify Ω by a basis of
vectors, and if Ω has the form Eq. (27) then we use the vectors a1, . . . , aξ in Eq. (27) as well as a basis for
I. Further, the value assignment γ can be specified by specifying its value on these generating vectors, and
then its value on the rest of Ω is determined through Eq. (16). Then all of the steps in the update can be
performed by linear algebra in Z2n

d on this small number of vectors.

Corollary 4. For any quantum circuit consisting of a sequence of polynomially many Clifford gates and
Pauli measurements on an n-qudit input state ρ, satisfying the following conditions:

• ρ =
∑

(Ω,γ)∈Ṽ
Wρ(Ω, γ)A

γ
Ω where Wρ(Ω, γ) ≥ 0 for all (Ω, γ) ∈ Ṽ,

• samples from the distribution Wρ can be obtained efficiently,

the outcome distributions of the measurements can be efficiently sampled from using Algorithm 2.

Of course, it could turn out that the maximal number of noncommuting Pauli operators on n qudits is
bounded by a polynomial in the number of qudits n, in which case Theorem 2 and Corollary 4 apply to the
full CNC phase space V , but as mentioned above this has not been proven. This is an open problem.

6 Relation to the Λ-polytope model

The Λ polytope models [37, 38] are a family of quasiprobability representations for quantum computation
with magic states satisfying (QR1)–(QR5) in which no negativity is needed in the representation of any
state. That is, all elements of this model of quantum computation—all states, Clifford gates, and Pauli
measurements are described probabilistically.

The qubit version of the model was extensively studied in [37, 39, 59]. There it was shown that for the
multiqubit case (d = 2), for maximal CNC sets Ω, the phase space point operators Aγ

Ω are vertices of the Λ
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polytopes, and thus define phase space points of the Λ polytope models. Here we consider a similar relation
between the odd-prime-dimensional qudit extension of the CNC construction and the Λ polytope models.

Let S denote the set of pure n-qudit stabilizer states. The Λ polytope models are based on the set

Λ = {X ∈ Herm1(d
n) | Tr(|σ〉 〈σ|X) ≥ 0 ∀ |σ〉 ∈ S}. (67)

The set Λ is a polytope for any dimension d (see [38, Lemma 1]). One can easily verify that Aγ
Ω ∈ Λ for

every Aγ
Ω of the form Eq. (17) (see the proof of Lemma 5). More generally, we want to specify Hermitian

operators in Λ whose expansion coefficients in the generalized Pauli basis are arbitrary coefficients on the
complex unit circle. That is, we want to consider Hermitian operators of the form

Aη
Ω =

1

dn

∑

u∈Ω

ωη(u)Tu, Ω ⊂ E, η : Ω → [0, π] (68)

that are contained in Λ. As it will turn out, the condition Aη
Ω ∈ Λ implies that Aη

Ω is precisely of the form
(17), i.e. Ω is closed under inference, η(u) (mod d) ∈ Zd, and

η(a+ b) ≡ η(a) + η(b) (mod d) if [a, b] = 0. (69)

For a linear subspace L ⊂ E let

L∗ := {γ : L→ Zd, γ(a+ b) = γ(a) + γ(b)} (70)

be its dual space, i.e. the space of linear functions on L.

Theorem 3. If Aη
Ω ∈ Λ, then

(i) If I is an isotropic subspace and I ⊂ Ω, then η|I ∈ I∗.

(ii) The set Ω is closed under inference, i.e., if a, b ∈ Ω and [a, b] = 0, then a+ b ∈ Ω.

For M ⊂ E let prM : Herm(dn) → span{Tb : b ∈M} be the projection that acts via

∑

u∈En

cbTb
prM7−→

∑

b∈M

cbTb. (71)

To prove the lemma, we will use the fact that if X ∈ Λ, then prI(X) ∈ prI(Λ). Lemma 9 in [38] allows us
to add redundant inequalities to Λ, so that we can write

Λ = {X ∈ Herm1(d
n) | Tr(Πγ

IX) ≥ 0 ∀I, ∀γ ∈ I∗}. (72)

where we range over all isotropic subspaces I and all γ ∈ I∗. We will be mainly interested in prI(Λ) for I
being an isotropic subspace.

Lemma 6. If I is an isotropic subspace, then prI(Λ) is a self dual simplex with vertices Πγ
I , γ ∈ I∗, in

particular prI(Λ) = conv{Πγ
I | γ ∈ I∗}.

Proof of Lemma 6. Due to prI(Π
γ
I ) = Πγ

I it follows that

prI(Λ) ⊆ {X =
∑

b∈I

cbTb | Tr(X) = 1, Tr(XΠγ
I ) ≥ 0 for all γ ∈ I∗}. (73)

Analogously, to Lemma 15 in [60], character orthogonality implies that the right hand side of (73) is a
self-dual simplex, so

{X =
∑

b∈I

cbTb | Tr(X) = 1, Tr(XΠγ
I ) ≥ 0 for all γ ∈ I∗} (74)

=conv{Πγ
I | γ ∈ I∗} (75)
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and the vertices of conv{Πγ
I | γ ∈ I∗} are precisely the operators Πγ

I . On the other hand Πγ
I ∈ Λ and therefore

Πγ
I ∈ prI(Λ) for all γ ∈ I∗ and therefore also conv{Πγ

I | γ ∈ I∗} ⊆ prI(Λ). �
We will use the characterization Lemma 6 to prove Lemma 3. The overall strategy will be to argue

that if Ω and η violate one of the conditions of the theorem, then there is an isotropic subspace I ⊂ E
such that prI(A

γ
Ω) /∈ prI(Λ) implying Aγ

Ω /∈ Λ. To show prI(A
γ
Ω) /∈ prI(Λ), we will construct a hyperplane

that separates the point prI(A
γ
Ω) from the polytope prI(Λ), that is, we construct some explicit Hermitian

operator Y ∈ span{Tb | b ∈ I} such that

Tr(prI(A
γ
Ω)Y ) > max

X∈prI (Λ)
Tr(XY ) = max

γ∈I∗
Tr(Πγ

IY ), (76)

where the last equation is a consequence of Lemma 6.
Proof of Theorem 3. Let Aη

Ω = 1
dn

∑

u∈Ω ω
η(u)Tu be Hermitian with η : Ω → [0, π] and Tr(Aη

Ω) = 1 (the
last condition implies 0 ∈ Ω and η(0) = 0). As Aη

Ω is Hermitian, we have

∑

u∈Ω

ωη(u)Tu = Aη
Ω = (Aη

Ω)
† =

∑

u∈Ω

ω−η(u)T−u, (77)

implying −η(u) = η(−u) for all u ∈ Ω.
(i) Let I be an isotropic subspace contained in Ω. We will show that if Aγ

Ω ∈ Λ, then η|I ≡ γ for some
linear function γ : I → Zd: Therefore, assume that η|I 6≡ γ for all linear γ ∈ I∗. In the sense of Equation (76),

we can separate prI(Λ) and prI(A
η
Ω) by the hyperplane with normal vector A

η|I

I ∈ span{Tb | b ∈ I}:

Tr
(
A

η|I

I prI(A
η
Ω)

)
=Tr

(
A

η|I

I A
η|I

I

)
(78)

=
1

d2n

∑

u∈I

ωη(u)−η(u) Tr(TuT−u) (79)

=
|I|

dn
> Tr

(
A

η|I

I Πγ
I

)
, (80)

where the strict inequality holds for all γ : I → Zd with γ 6= η|I , so in particular for all γ ∈ I∗.
(ii) Now suppose that η|I ∈ I∗ for any isotropic subspace I contained in Ω. For (ii) assume that there

are a, b ∈ Ω with [a, b] = 0 such that a + b /∈ Ω. We may assume that b 6= −a since 0 ∈ Ω. Set I = 〈a, b〉
(note that I * Ω) and

Y =ωη(a)Ta + ωη(b)Tb + ω−η(a)T−a + ω−η(b)T−b + ωη(a)+η(b)+⌊d/2⌋Ta+b + ω−(η(a)+η(b)+⌊d/2⌋)T−(a+b) (81)

∈ span{Tx |x ∈ I}. (82)

Then
Tr(prI(A

γ
Ω)Y ) = 4 (83)

but for any Πγ
I with γ ∈ I∗

Tr(Πγ
IY ) =(ωη(a)−γ(a) + ω−η(a)+γ(a)) + (ωη(b)−γ(b) + ω−η(b)+γ(b)) (84)

+ (ωη(a)+η(b)−γ(a)−γ(b)+⌊d/2⌋ + ω−(η(a)+η(b)−γ(a)−γ(b)+⌊d/2⌋)) (85)

=2 cos





2π(η(a)− γ(a))

d
︸ ︷︷ ︸

=:x




+ 2 cos







2π(η(b)− γ(b))

d
︸ ︷︷ ︸

=:y







(86)

+ 2 cos

(
2π(η(a)− γ(a) + η(b)− γ(b) + ⌊d/2⌋)

d

)

(87)

= 2

(

cos(x) + cos(y) + cos

(

x+ y + 2π
⌊d/2⌋

d

))

(88)

< 4. (89)

This proves the theorem. �
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7 Conclusion

In this work, we have presented the generalization of the CNC construction of Ref. [31] to the setting of
odd-prime-dimensional qudits. We provide a characterization of the CNC phase space in this setting, and
we describe its relation to other models like the Wigner function [11–13, 15] and the Λ polytope models [37,
38]. The phase space of this model contains the phase space of the Wigner function, but it also includes new
phase space points which cannot be described as convex mixtures of Wigner function phase space points.
We show that all vertices of the Λ polytopes with coefficients of absolute value equal to one when expanded
in the Pauli basis are CNC-type phase space point operators.

We also introduce a classical simulation algorithm for quantum computation with magic states based on
sampling from probability distributions over the CNC phase space. Since the CNC construction outperforms
the Wigner function and stabilizer methods in terms of the volume of states that can be positively represented,
this new method allows a broader class of magic state quantum circuits to be efficiently classically simulated.

To conclude, we make two additional remarks commenting on possible avenues of future work.

1. The CNC construction applies to qudits of any Hilbert space dimension, but the proof of efficiency
of the update rules under Clifford gates and Pauli measurements relies on the characterization of the
CNC phase space given in Ref. [31, §IV] for qubits and in Section 4 for odd-prime-dimensional qudits.
A similar characterization may be possible for qudits with composite Hilbert space dimension, but is
likely much more complicated, in part because the set of labels E := Z2n

d of the Pauli operators fails
to be a vector space for composite Hilbert space dimensions d [11].

2. For each fixed number n of qudits, the volume of states that are positively represented by the CNC
construction is strictly larger than the corresponding volume for the Wigner function. That said, talking
about scaling of simulation cost with the number of qudits is more difficult here. The reason is the
following: the phase space point operators of the Wigner function are closed under tensor products, and
in fact, every phase space point operator can be constructed as a tensor product of single-qudit phase
space point operators. As a result, the Wigner function is multiplicative: Wρ⊗σ(u⊗ v) =Wρ(u)Wσ(v)
(see e.g. Ref. [15]). When the representation goes negative for some state, the amount of negative
as measured by the 1-norm of the Wigner function is multiplicative in the number of copies of that
state. For the case of stabilizer quasimixtures [27], a tensor product of stabilizer states is again a
stabilizer state, but there are other entangled stabilizer states that cannot be constructed in this way.
As a result, the corresponding measure of negativity, the robustness of magic, is submultiplicative. On
the other hand, for the CNC construction, a tensor product of CNC phase space point operators is
generally not CNC. Thus, the equivalent of the robustness of magic for the CNC construction, another
measure of negativity, is super-multiplicative. For example, two copies of the magic state |H〉 (see
Figure 1) are nonnegative, but three copies are not [31]. This means we cannot obtain upper bounds
on the negativity of product states by computing the negativity in the representation for few qudits.
There are some tricks for partially addressing this, for example see Ref. [31, Appendix D] and [59], but
it remains more difficult to talk about scaling of quantum computational resources with the number
of qudits for the CNC construction than for previous methods. We regard this as an open problem.

The second issue above is also an present in other models derived from the Λ polytopes, e.g. [61]. While
the Λ polytopes are beginning to be explored for multiqubit systems [31, 39, 59, 62, 63], the extension of
the Λ polytope models to higher dimensional qudits is relatively new [38]. Here we provide some initial
structural insights, by characterizing the vertices with coefficients with absolute value equal to one in the
Pauli basis, but we believe there is much more to be learned here.

In other settings, the odd-prime-dimensional qudit setting is simpler than the even-dimensional case, and
was explored first. This is true for example for the link between Wigner functions and quantum computa-
tion [9, 10, 13, 15]. Following this pattern, we may be able to continue this work and derive insights from
the Λ polytopes for the simpler case of odd-prime-dimensional qudits which can later be imported to the
case of qubits.

18



Acknowledgements

M.Z. is funded by NSERC, in part through the Canada First Research Excellence Fund, Quantum Materials
and Future Technologies Program. During the process of writing this work A.H. was partially supported by
the Deutsche Forschungsgemein-schaft (DFG, German Research Foundation) under the Priority Program
Compressed Sensing in Information Processing (CoSIP, project number SPP1798) and under Germany’s
Excellence Strategy— Cluster of Excellence Matter and Light for Quantum Computing (ML4Q) EXC 2004/1
- 390534769. This work was also supported by the Horizon Europe project FoQaCiA, GA no. 101070558.

References

[1] E. Wigner. “On the Quantum Correction For Thermodynamic Equilibrium”. In: Physical Review 40.5
(1932), pp. 749–759. DOI: 10.1103/PhysRev.40.749.
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A Proofs of lemmas 2 and 3

To prove the lemmas, we will require some additional definitions and statements. For a set Ω ⊂ E, we define
the (undirected) orthogonality graph of Ω to be the graph G(Ω) = (Ω, E) with vertex set Ω and edge set
E = {{a, b} | [a, b] = 0}, i.e., vertices in G(Ω) are adjacent if and only if the corresponding elements of Ω are
orthogonal.

One crucial observation is the following. Suppose you are given a set Ω = {a, b, c, d} ⊂ E such that the
orthogonality graph G(Ω) is a 4-cycle (see Figure 2a). If the qudit Hilbert space dimension is d = 2, i.e., the
underlying field is Z2, then the orthogonal closure Ω is the Mermin square [31, 39, 56]. In contrast, if the
underlying field is Zd and d is an odd prime, then Ω is the 4-dimensional subspace spanned by {a, b, c, d}.
This is the result of the following lemma.

Lemma 7. If Ω = {a, b, c, d} and G(Ω) is a 4-cycle, then Ω = 〈a, b, c, d〉.

The proof of this Lemma is based on the proof of Lemma 1 in Ref. [33].
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Figure 2: Orthogonality graphs used in the proofs of Lemma 7, and Lemma 8.

Proof of Lemma 7. The orthogonality relations are depicted in Figure 2a. Since 〈a〉, 〈b〉, 〈c〉, 〈d〉 ⊂ Ω,
without loss of generality we may assume that [a, c] = [b, d] = 1. Any point v ∈ 〈a, b, c, d〉 can be written as

v = (αa+ δd) + (βb+ γc) (90)

with α, β, γ, δ ∈ Zd. Then since [a, b] = [a, c] = [b, d] = [c, d] = 0, it holds that [αa+δd, βb+γc] = 0, and so it
suffices to show that the planes spanned by non-orthogonal elements are contained in Ω, i.e., 〈a, d〉, 〈b, c〉 ⊂ Ω.
But this follows immediately from the arguments in the proof of Lemma 1 in Ref. [33]. �

We also need the following additional lemma.

Lemma 8. Assume that Ω = {a, b, c, d} such that dim(〈a, b〉) = dim(〈c, d〉) = 2 and G(Ω) is given by
Figure 2b. Then Ω has the form Eq. (27), or Ω contains a subset M such that G(M) is a 4-cycle.

Proof of Lemma 8. Since dim(〈c, d〉) = 2, there is a nontrivial x ∈ 〈c, d〉 ⊂ Ω, such that [a, x] = 0. Now
we distinguish two cases. For the first case, assume [b, x] = 0, and so the orthogonality graph of {a, b, x, d}
is Figure 2c. Then there is a nontrivial y ∈ 〈a, x〉 ⊂ Ω such that [d, y] = 0, and defining I := 〈x, y〉 we have
b, d ∈ I⊥ (see Figure 2d for the orthogonality relations). Then the closure of Ω is given by

Ω = 〈b, I〉 ∪ 〈d, I〉. (91)

In the second case, assume [b, x] 6= 0 (see Figure 2e for the relevant orthogonality relations). Since
dim(〈x, d〉) = 2 there is a nontrivial y ∈ 〈x, d〉 = 〈c, d〉 such that [b, y] = 0. Furthermore, as a⊥ ∩〈c, d〉 = 〈x〉,
it holds that [a, y] 6= 0. Then for Ω′ = {a, b, x, y} we have Ω = Ω′ and the graph G(Ω′) is a 4-cycle. �

Proof of Lemma 2. Let Ω ⊂ E be a subspace. If v ∈ Ω, there is nothing to show, so assume v /∈ Ω.
Clearly,

〈v,Ω ∩ v⊥〉 ⊆ Ω ∪ {v} (92)

and if Ω ⊂ v⊥ we have equality in (92) and Ω ∪ {v} is a subspace. Now assume that there is an x ∈ Ω such
that [v, x] 6= 0. Since dim(Ω∩ v⊥) ≥ dim(Ω)− 1, it follows that Ω = 〈x,Ω∩ v⊥〉. Now we consider two cases:

(I) If Ω ∩ v⊥ is an isotropic subspace, then H := 〈v,Ω ∩ v⊥〉 is isotropic as well. Then dim(H ∩ x⊥) =
dim(H)− 1 and H ∩ x⊥ ⊂ v⊥ and we can write the closure of Ω as

Ω = 〈x,H ∩ x⊥〉 ∪ 〈v,H ∩ x⊥〉 (93)

so Ω has the form of Eq. (27).
(II) If Ω ∩ v⊥ is not an isotropic subspace, then there are a, b ∈ Ω ∩ v⊥ such that [a, b] 6= 0. If a, b ∈ x⊥,

then G({a, b, v, x}) is a 4-cycle (see Figure 3a), and we apply Lemma 7. Otherwise, since dim(〈a, b〉) = 2 we
may assume without loss of generality that [a, x] = 0 and [b, x] 6= 0 (Figure 3b). Then we are precisely in
case (2) of the proof of Lemma 8 implying that {a, b, v, x} = 〈a, b, v, x〉. Consequently, 〈v, x〉 ⊂ Ω ∪ {v}. As
x was chosen arbitrarily in Ω \ v⊥, it follows Ω ∪ {v} = 〈Ω, v〉. �

Finally, to prove Lemma 3, we need one more observation, which follows from Lemma 2.

Corollary 5. If Ω ⊂ E is a subspace and contains a, b, c, d such that G({a, b, c, d}) is a 4-cycle (Figure 2a),
then Ω ∪ {v} = 〈Ω, v〉 for all v ∈ E.
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Figure 3: Orthogonality graphs used in the proof of Lemma 2.

Proof of Corollary 5. It suffices to prove that Ω ∩ v⊥ is not isotropic because then case (II) in the
proof of Lemma 2 can be applied. Therefore, let I ⊂ Ω be an isotropic subspace. As the largest isotropic
subspace contained in 〈a, b, c, d〉 has dimension 2, it follows that dim(〈a, b, c, d〉 ∩ I) ≤ 2. Since 〈a, b, c, d〉 is
a 4-dimensional subspace contained in Ω and I ⊂ Ω, it follows dim(I) ≤ dim(Ω) − 2. However, Ω ∩ v⊥ is a
(dim(Ω)− 1)-dimensional subspace, hence, Ω ∩ v⊥ is not isotropic. �

Proof of Lemma 3. Let

Ω =

ξ
⋃

k=1

〈ak, I〉 (94)

where I is an isotropic subspace, ak ∈ I⊥, and [ai, aj ] 6= 0 for i 6= j. We assume that ξ > 1, otherwise we
are in the situation of Lemma 2. As before, there is nothing to show if v ∈ Ω, so suppose v /∈ Ω. We have
two cases.

(I) First, assume I ⊂ v⊥. Here we have two subcases.
(I.1) If [v, ak] 6= 0 for all k ∈ {1, . . . , ξ}, then set aξ+1 = v and we have

Ω ∪ {v} =

ξ+1
⋃

k=1

〈ak, I〉. (95)

(I.2) Otherwise, without loss of generality we can assume that [a1, v] = 0. In this case there is a nontrivial
ṽ ∈ 〈a1, v〉 ⊂ Ω such that [a2, ṽ] = 0, and we can replace v by ṽ. Here again we have two subcases.

(I.2.a) If [a2, ṽ] = · · · = [aξ, ṽ] = 0, then Ĩ := 〈ṽ, I〉 is an isotropic subspace and

Ω ∪ {v} =

ξ
⋃

k=1

〈ak, Ĩ〉. (96)

(I.2.b) If [ṽ, ak] 6= 0 for some k ∈ {3, . . . , ξ}, without loss of generality [ṽ, a3] = 0. Then there is a
nontrivial v′ ∈ 〈a1, v〉 = 〈a1, ṽ〉 such that [a3, v

′] = 0. Since [ṽ, a2] = 0 and v′ = αa1 + βṽ ∈ 〈a1, ṽ〉 for any
α, β ∈ Zd, it follows that

[v′, a2] = β[a1, a2] 6= 0. (97)

As ṽ, v′ are contained in the isotropic subspace 〈a1, v〉 the orthogonality graph G({ṽ, v′, a2, a3}) is given by
Fig. 4a.

Applying case (2) of Lemma 8 and Lemma 7 shows that

〈ṽ, v′, a2, a3〉 = {ṽ, v′, a2, a3} ⊂ Ω ∪ {v}, (98)

and therefore, since ṽ, v′, a2, a3 ∈ I⊥, the subspace U ′ = 〈I, ṽ, v′, a2, a3〉 is contained in Ω.
To conclude this subcase, observe that

Ω = U ′ ∪ {a1} ∪ {a4} ∪ · · · ∪ {aξ}. (99)

Now consider U ′ ∪ {h1} and use the fact that we can construct a 4-cycle in 〈ṽ, v′, h2, h3〉 ⊂ U ′. Thus, we are
able to apply Corollary 5 to get U ′ ∪ {a1} = 〈U ′, a1〉 and iteratively we obtain

Ω = U ′ ∪ {a1} ∪ {a4} · · · ∪ {aξ} = 〈I, a1, . . . , aξ, v〉. (100)
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Figure 4: Orthogonality graphs used in the proof of Lemma 3.

(II) For the second case, suppose that I * v⊥. Let u ∈ I with [u, v] 6= 0. Since a1, a2 ∈ I⊥ ⊂ u⊥ we can
find a nontrivial ã1 ∈ 〈u, a1〉 and a ã2 ∈ 〈u, a2〉 such that [ã1, v] = [ã2, v] = 0. Since [ã1, ã2] = [a1, a2] 6= 0,
the orthogonality graph G(u, v, ã1, ã2) is given in Figure 4b and therefore a 4-cycle. Hence, by Lemma 7, it
follows that Ω ∪ {v} contains the subspace 〈ã1, ã2, u, v〉. Now we can iteratively add the remaining elements
of I and the cosets a3 + I, . . . aξ + I to 〈ã1, ã2, u, v〉 and apply Corollary 5 to obtain Ω = 〈I, a1, . . . , aξ, v〉. �
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