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Negativity in certain quasiprobability representations is a necessary condition for a quantum com-
putational advantage. Here we define a new quasiprobability representation exhibiting this property
with respect to quantum computations in the magic state model. It is based on generalized Jordan-
Wigner transformations and it has a close connection to the probability representation of universal
quantum computation based on the A polytopes. For each number of qubits it defines a polytope
contained in the A polytope with some shared vertices. It leads to an efficient classical simulation
algorithm for magic state quantum circuits for which the input state is positively represented, and
it outperforms previous representations in terms of the states that can be positively represented.

I. INTRODUCTION

Quasiprobability representations have long played a
crucial role in physics bridging the gap between classi-
cal and quantum [I]. Often with such representations,
negativity serves as an indicator of genuinely quantum
behaviour, with the fragment of quantum theory that is
positively represented behaving more classically [2].

Gross’ discrete Wigner function [3, 4]—a quasiprob-
ability representation for systems of odd-dimensional
qudits—has been particularly useful in describing quan-
tum computations in the magic state model. In fact,
Veitch et al. [5] showed that negativity in this represen-
tation is a necessary condition for a quantum computa-
tional advantage over classical computation. This result
is obtained by defining an efficient classical simulation al-
gorithm for magic state quantum computations that ap-
plies whenever the input state of the quantum circuit has
a nonnegative representation. In the last decade, many
other quasiprobability representations have been defined
which also exhibit this property [6HIZ].

This viewpoint relating negativity and quantum com-
putational advantage was disrupted in Refs. [13, [I4]
where a fully probabilistic model describing universal
quantum computation was defined. In this model, all
quantum states are represented by a probability distri-
bution over a finite set of hidden states and all computa-
tional dynamics are represented by stochastic state up-
date rules—no negative probabilities are required. How-
ever, this circumvention of negativity comes at a cost: it
can no longer be guaranteed that the update rules are
efficiently computable classically. Thus, although this
model yields a classical simulation algorithm for univer-
sal quantum computation, the simulation is likely ineffi-
cient in general (as would be expected for any classical
simulation of universal quantum computation).

* These authors contributed equally.

The ultimate question for these classical simula-
tion methods based quasiprobability representations is:
Where runs the line between efficient and inefficient clas-
sical simulation, and which physical or mathematical
property determines it? For qubits, so far it is known
that this dividing line lies somewhere between the quan-
tum computations covered by the so-called CNC con-
struction [I1], and the universal quantum computations
described by the A polytopes [I3] (see Fig. [I]).

In this work, we enlarge the known region of efficient
classical simulability inside the A-polytopes. Specifically,
we define a new quasiprobability representation interme-
diate between those of the CNC construction and the
A-polytopes. This model has efficiently computable up-
date rules, and it yields an efficient classical simulation
algorithm for quantum comptutations on the subset of in-
put states that are positively represented. It includes the
CNC construction, and previous methods such as those
based on quasimixtures of stabilizer states [8]. Thus, we
effectively push out the boundary of quantum computa-
tions which can be efficiently simulated classically.

Eine graph \
e @ Stabilizer

FIG. 1. The big question about the A polytopes [13] [14] is
where the line between efficient and inefficient classical simu-
lation of quantum computation lies. Here, we increase the size
of the known efficiently simulable region. Our construction is
based on Jordan-Wigner transformations, and its range of ap-
plicability includes the earlier CNC construction [II], which
in turn includes the stabilizer formalism [8), [I5] [16].
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FIG. 2. Implementation of a T-gate via the magic state
|H) = J5(|0) + ¢™/*|1)) [26] §10.6]. Since the Clifford+T
gate set is universal for quantum computation [26] §4.5], this
proves universality of the magic state model, which allows
Clifford gates and Pauli measurements supplemented with the
injection of nonstabilizer input states.

The model is based on generalized Jordan-Wigner
transformations [17], and it’s conception was influenced
by the surprising connection to Majorana fermions first
realized in the CNC construction [II]. It was also par-
tially inspired by the techniques of mapping to free
fermions in the simulation of other computational mod-
els such as matchgate circuits [I8], which have recently
received renewed interest [L9-22].

The remainder of this paper is structured as follows.
We begin in Section [l by introducing some notation and
definitions. In Section [[TI] we define the new quasiproba-
bility representation of quantum computation with magic
states. In Section [[V] we describe the behaviour of the
generalized phase space over which this representation is
defined with respect to the dynamics of quantum compu-
tation with magic states, namely, Clifford gates and Pauli
measurements, and we define a classical simulation algo-
rithm for quantum computation with magic states that
applies whenever the input state of the quantum circuit is
positively represented. We also define a monotone for the
resource theory of stabilizer quantum computation [23]
in the case where the state is not positively represented.
In Section [V] we elucidate the relationship between this
model and the A polytopes. Finally, we conclude with a
discussion of these results in Section [Vl

II. PRELIMINARIES

The setting of this paper is quantum computation with
magic states (QCM) on systems of qubits [24]. In this
model, computation proceeds through the application of
a sequence of Clifford gates and Pauli measurements on
an initially prepared “magic” input state. For example,
Fig. 2] shows the standard implementation of a T’ gate in
this model. In general, the input can be any nonstabilizer
quantum state, but for universal quantum computation
it suffices to consider input states formed from multiple
copies of a single-qubit nonstabilizer state [25]. The out-
put of the computation is derived from the outcomes of
the measurements.

A. Notation

Before proceeding we need to introduce some notation.
The single-qubit Pauli group is the group generated by
the Pauli operators (X,Y,Z). More generally, the n-
qubit Pauli group P is the group of Pauli operators act-
ing on n qubits. It is constructed from tensor products
of single-qubit Pauli operators. Quotienting out overall
phases we have P/Z(P) = Z3" and we can fix a phase
convention for the Pauli operators to be

T, =i =1%) Z(a,) X (ay) (1)

for each a = (a,,a,) € Z5 X Z% =: E, where Z(a,) =
R, 2%, X(a,) = @;_, X% and the inner prod-
uct {a|a;) is computed modulo 4. The symplectic prod-
uct [+,-] : E X B — Zy defined as

[a,b] = {a.|by) + {(az|b.), Va, b€ E

tracks the commutator of the Pauli operators as 7,7}, =
(—=D)[@YTyT,. We define a function 3 that tracks the
signs that get picked up by composing pairs of commuting
Pauli operators compose as

T.T, = (—1)P@T, . (2)

A projector onto the eigenspace of a set of pair-wise
commuting Pauli observables I C E corresponding to
eigenvalues {(—1)"(®) | a € I} is given by

1 la
Iy = mZ(—l) @7, (3)
acl

The set I C E and the function r : I — Zs must satisfy
a set of consistency conditions in order for I} to be a
valid projector. First, I must be a closed subspace of E.
Furthermore, in order for the observables in I to be simul-
taneously measurable they must commute, and so I must
be an isotropic subspace—a subspace on which the sym-
plectic form vanishes. We must also have (—1)"()Ty = 1,
or equivalently with the phase convention chosen above,
r(0) = 0. Lastly, for each a,b € I, from the relation
(-=1)"@T, - (=1)*®O T, = (=1)"@+OT, ,, we must have

r(a) +r(b) +r(a+0b) = B(a,b) mod 2.

In the case of a single Pauli measurement a € E yielding
measurement outcome s € Zs, the corresponding projec-
tor is II¥ = (1 + (—1)°T,)/2.

A stabilizer state on n-qubits is an eigenstate of set
of n independent and pair-wise commuting Pauli opera-
tors [15, 27]. In the case I C E is a maximal isotropic
subspace, II7 is a projector onto a stabilizer state. We
denote by S the set of n-qubit stabilizer states.

The gates of QCM are drawn from the Clifford group—
the normalizer of the Pauli group in the unitary group up
to overall phases: C{ := N(P)/U(1). The Clifford group
acts on the Pauli group as

9(Ta) = (_1)@Q(Q)nga7vg €Cl,Va € E,



where for each g € C¢, Sy is a symplectic map on E (i.e.
a linear map that preserves the symplectic product), and
®, is a function defined through this relation to track the
signs that get picked up in the Clifford group action.

The functions 8 and ®, above have a cohomological
interpretation defined in Ref. [28] that relates them to
proofs of contextuality. This was further elucidated in
Ref. [29] which relates them to the phenomenology of
quantum computation with magic states.

In the following we use the notation O for a general
subset of E (labels for a subset of Pauli operators), and
O* for the set O\ {0} (the nonidentity Pauli opera-
tors in O). We denote by Herm(#) the space of Her-
mitian operators on Hilbert space H, and unless other-
wise specified, H = (C?)®" is the n-qubit Hilbert space.
Herm; (H) is the affine subspace of Herm(H) consisting
of operators with unit trace and Herm:%(#) is the sub-
set of Herm; (H) consisting of positive semidefinite opera-
tors. Hermlto(H) contains density operators representing
physical quantum states.

B. Previous quasiprobability representations
The CNC construction

Recently, a quasiprobability representation for QCM
was defined based on noncontextual sets of Pauli ob-
servables [I1], this is the so-called CNC construction.
Therein, phase space points are identified with pairs
(©,7), where Q C E is a subset of Pauli operators and

v : Q — Zs is a function on () satisfying two conditionsﬂ

1. Closure under inference. For all a,b € €,

[a, b)) =0=a+beQ

2. Noncontextualityﬂ v is a noncontextual value as-
signment function on €. L.e. a function v : Q — Zo
such that (=1)"©Ty = 1 and Va,b € Q with
[a,b] = 0, we have

v(a) +v(b) + v(a+b) = B(a,b) mod 2. (4)

Then the phase space point operator associated to
phase space point (€2,7) is defined as

Ay = =3 (10, (5)

= 27
beQ

1 “CNC” is for Closed and Non-Contextual after these conditions.

2 Implicit in the condition on ~ there is a constraint on the set Q,
namely that such a noncontextual value assignment function ex-
ists. Because of Mermin square-style proofs of contextuality [30],
this is not guaranteed for general subsets of E.

These operators span the space of Hermitian operators on
Hilbert space H = (C2)®" and so any n-qubit quantum
state p can be expanded in these operators as

p=_ Wy(2,7)A} (6)
(Q,y)ev

It was shown in Ref. [T}, §IV] that the admissible pairs
(©,7) could be characterized as follows. Let I C E be
an isotropic subspace and QC Ebea subset of Pauli
operators such that [a,b] = 1 for all a,b € Q. Then the
sets (2 can be expressed as 2 = |J,.q(a, I). The signs vy

on €2 can be chosen freely on ) and on a basis of I, and
then the signs on the rest of ) are determined by eq. .

In simpler terms, the phase point operators have the
form

Af = g(A @ o) (o])g! (7)

where g € C{ is a Clifford group element, all elements of
Q) pair-wise anticommute, the signs 4 on * can be cho-
sen freely, and |o) is a stabilizer state. Interestingly, a set
of pair-wise anticommuting Pauli operators has the same
algebraic structure as a set of Majorana fermion opera-
tors and so, ignoring the stabilizer state tail in Eq. ,
we can view the operator Agz as linear combinations of
Majorana operators.

A phase space point operators of the form eq. maps
deterministically to another phase space point operators
under any Clifford gate, and it maps to a probabilistic
combination of such operators under Pauli measurements
(see Ref. [I1], §5] for details). Further, these updates can
be computed efficiently on a classical computer. As a re-
sult, the representation of eq. @ yields an efficient classi-
cal simulation algorithm for QCM that applies whenever
the input state of the quantum circuit has a nonnegative
representation.

The A polytopes

In Refs. [I3, 0], a probability representation (or a
hidden variable model) of quantum computation with
magic states was defined. It has the same structure as a
quasiprobability representation, except for the fact that
no negativity is needed.

This representation can be defined for qudits of any
Hilbert space dimension, but we state only the multi-
qubit version here. The state space of the model is based
on the set

A = {X € Herm;(H) | Tr(|o) (o] X) > 0V|o) € S} (8)

where S denotes the set of pure n-qubit stabilizer states.
For each number n of qubits, A is a bounded polytope
with a finite number of vertices [I4]. We denote the ver-
tices of A by {A, | @ € V} where V is an index set. Then
the model is defined by the following theorem.



Theorem 1 (Ref. [13]; Theorem 1) For any number
of qubits n,

1. Any n-qubit quantum state p € Herm="(#) can be
decomposed as

p= Y p0) Ao, Q

aeV
with py(a) >0 for alla €V, and Y~ py(a) = 1.

2. For any An, a €V, and any Clifford gate g € C¢,
gAagt is a vertex of A. This defines an action of
the Clifford group on V as gAng" =: Ag.o where
g-acl.

3. For any As, a €V and any Pauli projector 113 we
have

HZAOLHZ - Z qa,a(ﬁa S)A,B
Bpev

with goo(a,s) > 0 for all B €V and s € Za, and
2575 QQ,(L(67S) =1.

This theorem describes a hidden variable model for
QCM in which (i) states are represented by probability
distributions p, over V, and (ii) Clifford gates and Pauli
measurements are represented by stochastic maps g - «
and ¢, . In this model, no negative values are needed
in the representation of states, gates, or measurements—
it is a true probability representation, but we can no
longer guarantee that the updates under Clifford gates
and Pauli measurements are efficiently computable clas-
sically. Thus, although this representation does give a
classical simulation algorithm for any magic state quan-
tum circuit, the simulation is inefficient in general. An-
alyzing the efficiency of simulation using the A polytope
requires a characterization of it’s vertices.

To date, only the A polytopes on one and two qubits
have been fully characterized. In addition, some vertices
of A are known for every qubit number. For example,
it is known that the CNC-type phase point operators
associated to maximal CNC sets are vertices of the A
polytopes [13 [31].

III. MULTIQUBIT PHASE SPACE FROM
JORDAN-WIGNER TRANSFORMATIONS

Below we define a new quasiprobability representation
intermediate between the CNC construction and the full
A polytope model based on newly characterized vertices
of A for any number of qubits. This new model can pos-
itively represent more states than the CNC construction
(though not all quantum states as in the case of A), and
it maintains the property of efficiently computable state
update rules for the dynamics of QCM.
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FIG. 3. (a) The complete graph on four vertices K4, and
(b) the line graph of K4 denoted L(K4). The edge between
vertices v; and v; in K4 maps to the vertex e; ; in L(K4). Two
vertices in L(K4) share an edge iff the corresponding edges of
K4 share a vertex.

A. Line graphs and Jordan-Wigner transformations

The generalized phase space we define will consist of
operators which can be described by quadratic polynomi-
als of Majorana fermion operators. We motivate this ap-
proach by first considering the earlier CNC construction.
As alluded to above, on n-qubits a maximal CNC set
(without stabilizer state tensor factors) is given by 2n+1
pair-wise anti-commuting Pauli operators [I1], §IV]. Such
a set of Pauli operators satisfy the anti-commutation re-
lations

{vi v} = + v = 2035

which are exactly the relations satisfied by a set of Majo-
rana operators. Thus, under a Jordan-Wigner-like trans-
formation, the maximal CNC operators are given by lin-
ear combinations of Majorana operators. Furthermore,
there is a large body of work studying which operators
can be described via quadratic combinations of Majorana
operators. In particular, recently it has been shown that
the operators describable in such a way can be identi-
fied by the structure of the graphs describing their anti-
commutation relations [17].

Given a graph R = (U, €), the line graph of
R, L(R) = (¢,¢) is the graph whose vertex set
is the edge set of R, and whose edge set is ¢ =
{(e1,e2) € € x Eley Neg # 0}; that is two vertices in
L(R) are neighbours if and only if the corresponding
edges in R share a vertex. Given a line graph G = L(R),
we refer to the graph R as the root graph of L(R). See
Figure 3] for an example. We will also use the notion
of twin wertices. Two vertices u,v € U are twin ver-
tices if for every vertex w € U, (u,w) € € if and only if
(v,w) € €.

Let O C E be a subset of the Pauli operators. We
define the frustration graph of O, F (O) = (O, €) as the
graph whose vertices are identified with elements of O,
and with edges drawn between a,b € O if and only if
[a,b] = 1.
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FIG. 4. An example of a realization of the line graph L(K5) as
the frustration graph of a set of Pauli observables. (a) First we
find a set of five pair-wise anticommuting Pauli observables,
in this case {X1, Y2, Z1 X2, Z1Y2Z1Z5}. The frustration graph
of these observables is K5. (b) The set of Pauli observables
obtained by taking all products of pairs of observables in this
set has frustration graph L(K5).

We now show that every line graph, L(R), can be re-
alized as the frustration graph of some set of Pauli op-
erators O [I7] (see Fig. {4 for an example). To do this,
we first construct a set of |R| pair-wise anti-commuting
Pauli operators. For even |R|, we can find such a set
by taking the standard Jordan-Wigner transformation of
Majorana fermion operators [32]

j—1
OQj—l - ® Zk & Xj (10)
k=1
j—1
Coj =R Zr ®Y; (11)

k=1

for j = 1,...,|R|/2. For odd |R|, we use the Jordan-
Wigner transformation on |R| —1 qubits and also include
the operator

(I1R[-1)/2

Cr= Q 2 (12)
k=1

Now we identify each vertex r in R with an operator
C,. We can then identify each edge (rj,r;) in R, and
consequently each vertex in L(R), with the Pauli opera-
tor £iC,., C,. Two Pauli operators ¢C,., C;, and iC,,Cy,
anti-commute if and only if they share exactly one Ma-
jorana operator, but this is equivalent to the associated
edges in R sharing a vertex. Thus, the frustration graph
of this set of quadratic Majorana operators is exactly the
line graph L(R), as desired. Note that this is not nec-
essarily the most efficient way to realize each line graph
as a frustration graph, though it does work for any line
graph L(R).

B. Definition of the generalized phase space

In this work we are interested in operators with the
following structure:

Definition 1 A Hermitian operator expanded in the
Pauli basis as

AS = 2% <1 + ) ch,,> (13)

beO*

is a line graph operator if the frustration graph of O* is
a line graph.

We actually wish to be a bit more permissive than re-
quiring the frustration graphs to be exactly line graphs.
In particular, we also want to include operators that have
been obtained by tensoring on stabilizer states and con-
jugating by a Clifford gate, as in Eq. . In this case,
the frustration graph will only be a line graph up to twin
vertices. Suppose we take an operator which is the tensor
product of a projector onto an m-qubit stabilizer state,
|o) (o], and an n — m-qubit operator, A%, whose frus-
tration graph is a line graph. Then for each non-trivial
Pauli operator in A% there are 2™ associated vertices in
the frustration graph of A, ®|o) (o|. These vertices will
all be pair-wise twin vertices. Thus if we can partition
a graph into sets of equally sized pair-wise twin vertices
then the associated operator will have a stabilizer tail. It
is thus possible to include stabilizer states in this formal-
ism by collapsing sets of twin vertices.

In order for operators with the above structure to cor-
rectly reproduce the quantum mechanical predictions for
sequences of Pauli measurements, they must be in the
A polytopes. Otherwise, we could easily construct se-
quences of Pauli measurements which give nonsensical
results when performed on these operators. Without any
more constraints, this defines an infinite set of opera-
tors for every number of qubits since the coefficients in
eq. (13) can vary continuously.

For the purpose of defining the generalized phase space
we can focus our attention on a finite subset of these op-
erators. We choose this set in the following way. Let O
be a set of Pauli operators such that the frustration graph
of O* is a line graph. The operators of the form eq. ([13))
with support O form an affine subspace of Herm;(#).
Projecting the polytope A onto this affine subspace de-
fines a new polytope with a finite number of vertices, and
when interpreted as a polytope embedded in the same
4™ — 1-dimensional space as A with the Pauli coefficients
of E\ O set to zero, it is contained in A. This pro-
jected polytope also has a finite number of vertices. We
take the generalized phase point operators to be opera-
tors of this form, possibly with a stabilizer state tensor
factor added and a conjugation by a Clifford operator.
This augmentation of the line graph operators is natural
for our purposes since tensoring on stabilizer states and
conjugating by Clifford operators does not increase the
complexity of classical simulation [33].



To summarize, the set of phase space point operators
corresponding to our generalized phase space V is the
set of operators that can be constructed by the following
procedure:

1. Start by defining a support O C E such that the
frustration graph of O* is a line graph,

2. project A onto the affine subspace spanned by the

operators in @*, choose an extreme point A% of
this projected polytope,

3. choose a stabilizer state |0) € S and a Clifford gate
g € Cl, return AS, = g(A%®|a> (o])g" as the phase
point operator.

Such an operator can be uniquely labeled by its support
O in the Pauli basis and the corresponding Pauli basis
coeflicients c.

With these conditions defining the generalized phase
space V, any state p can be decomposed as

p=>, W,(0,045. (14)
(0,0 ev

This is the representation of states in the model. Note
that since the phase point operators are over-complete,
this representation is not unique. It is generally prefer-
able to choose a representation that minimizes the
amount of negativity as measured by the 1-norm of the
coefficients W,(O, ¢). This can be obtained through lin-
ear programming.

IV. EXTENDED CLASSICAL SIMULATION

Let A% be an operator of the form eq. 1) where
the frustration graph of the Pauli operators O* is a line
graph. Further assume that the coefficients ¢ are chosen
so that A%, is in A. The goal of this section is to show
that the set of operators with these properties is closed
under the dynamics of quantum computation with magic
states—Clifford gates and Pauli measurements.

Note that if we can establish that the line graph opera-
tors themselves are closed under conjugation by Clifford
group elements and Pauli measurements, then clearly
the generalized phase space defined in Section [[II] is also
closed under these operations.

A. Closure under Clifford gates

First we consider the action of Clifford gates on op-
erators of the form eq. . For any Clifford operation
g € Cl, we have

9(Ap) =on Z cvg(Th)

beO*

1 @
beO*

This defines an action of g on the support O as
9-0={S;b|be O},

and on the coefficients ¢ as
(98,6 = cp(—1)*s®).

Since A is closed under Clifford operations [13], if AS, is
in A then Ag:é is also in A.

Since Clifford operations preserve commutation rela-
tions of Pauli operators, the frustration graph of g-O* is
isomorphic to that of O*. Thus, if the frustration graph
of O* is a line graph then so is the frustration graph of
g-O*.

B. Closure under Pauli measurements

Now consider the action of the Pauli projector II? cor-
responding to a Pauli measurement T,, a € FE, yielding
measurement outcome (—1)°. We want to compute the
projection of the “state” A%.

The only terms in Af, that remain after projecting
with II7 are those that commute with T,,. Let T} be any
Pauli operator in O that anti-commutes with 7,. Let
Ji = {a,b}* N O, ie., J; is the subset of Paulis in O
that commute with a and b, and let J5 be the subset of
{a}* N O that anti-commute with b. Then we can write

- 1
MAQI, = oI5 | Y T+ D T,

jeJ1 JjEJ2
1 S
= St (A, + (—-1)°T,Ay)
1 S
- 27HGAO'

where

A= T+ (-1)°T0 Y o;T;. (15)

VISR JjEJ2

Now note that the Pauli elements non-trivially acted
on by A, are distinct from those non-trivially acted on by
T, A, since those in A, commute with T, while those in
T, A, anti-commute with Tp. Furthermore, for each T; €
A, there is a corresponding element 71,7} € T, A, such
that for any Tj € HASIE we have [1},T)] = 0 <
[T,T;,Tx] = 0. Thus A, and T,A, form sets of twin
vertices in the frustration graph of 115 ASTIS.

Now we only need to show that the frustration graph
of A, is a line graph. Since all the elements of T';, com-
mute with T, their commutation relations with element
in T, Ty, is the same as their commutation relations with
elements in T'y,. Hence the frustration graph of A, is an
induced subgraph of the frustration graph of O. Since the



property of being a line graph is an induced-subgraph-
hereditary property, the frustration graph of A, is a line
graph.

We also need to show closure of operators of the form
NS 1 AZ, under Pauli measurements. These are the
operators that are line graph operators up to twin ver-
tices. We can appeal to the circuit reduction techniques
in Refs [34, 35] and in Theorem 3 of Ref. [33] to re-
duce a sequence of Pauli measurements on n qubits to
a sequence of exactly n commuting Pauli measurements.
Then a measurement of H;::i will commute with the
operator IT7! ... TI7™ and we can apply the techniques in
the previous paragraph to update the phase space point
operator.

C. Classical simulation algorithm

As shown in Sections [VA] and [V B] the generalized
phase space V over which the quasiprobability repre-
sentation is define is closed under Clifford gates and
Pauli measurements—the two dynamical operations in
the model of quantum computation with magic states.
This fact allows us to define a classical simulation algo-
rithm for quantum computation with magic states that
applies whenever the representation of the input state is
nonnegative, Algorithm [I]

The proof of correctness for this algorithm is analogous
to the proof of Theorem 5 of Ref. [11] or the proof of The-
orem 2 of Ref. [I3]. The proof of efficiency for the state
updates follows from the fact that each set O consists
of O(n?) Pauli operators when neglecting the stabilizer
tail. Clifford updates require determining the action of
g € Cl on each element of O, which can be computed
in polynomial time. Update under Pauli measurements
first requires calculating Tr(IIj Ao,z ), which can be de-
termiend efficiently as Ao ) only has O(n?) Pauli op-
erators with non-zero coeflicients. We then need to find
the projection of O(n?) Pauli operators onto T, which
can be done efficiently via the Gottesman-Knill theorem.
Lastly we need to update the sequence of gates and mea-
surements, which can be done efficiently via Theorem 3
of Ref. [33].

In general a state p will not admit a decomposition
such that W,(0,¢) > 0 for all (O,¢). Consequently we
define the robustness of a state as

p=>, W(0,0A;
(0,6)ev

Since line graph operators are preserved under Clifford
gates and Pauli measurement the robustness is a mono-
tone. The complexity of the simulation algorithm in the
presence of negativity can then be related to the robust-
ness [7]. This generalized robustness is bounded above by
the phase-space robustness of the CNC construction [I1]
and the robustness of magic [g].

Input: p,,, sequence of gates and measurements T
1: sample a point (O,¢) € V according to the probability
distribution p,,
2: while end of circuit has not been reached do
3 if a Clifford gate g € C¢ is encountered then
4 update (O, ¢) < g-(0,¢)
5. end if
6 if a Pauli measurement 7T,, a € E is encountered then
7 choose outcome s with probability Tr(II; A(o,z))
8 choose a Pauli operator T} such that [a,b] # 0

9: update Ao,z + 115 A, as in Eq.
10: update 7 according to Refs. [34] 135
11:  end if

12: end while

Algorithm 1: One run of the classical simulation of
quantum computation with magic states based on the
quasiprobability representation defined in Sections [ITI]
and the update rules described in Sections[[V Aland [V B|
The algorithm provides samples from the joint probabil-
ity distribution of the Pauli measurements in a quantum
circuit consisting of Clifford gates and Pauli measure-
ments applied to an input state p such that W, > 0.

V. NEW VERTICES OF THE A POLYTOPES

The generalized phase space of the present model is
defined in part by looking at projections of A. Depend-
ing on the subspace on which we project, the projected
polytope may share vertices with A. In this section we
show that this is indeed the case. In particular, we show
that, for any number n of qubits, projecting A onto the
space of operators with support O for which the frus-
tration graph of O* is the line graph L(Ka,1) gives a
polytope which shares vertices with A. This is the con-
tent of Theorem ] below. In this case we can determine
the coefficients of the vertices in the Pauli basis as well,
thus we obtain a complete characterization of new fam-
ilies of vertices of the A polytopes for every number of
qubits. By polar duality [14], we also obtain a complete
characterization of new families of facets of the stabilizer
polytope for every number of qubits.

This is the result of the following theorem.

Theorem 2 Define the operator

Al = 2% (1 + % > (—1)”(b)Tb> (16)

beO*

where the frustration graph of O* is L(Kany1). There
exist choices for the signs n : O — Zo such that the
operators A, of the form eq. @ are vertices of A.

The rest of this section is devoted to the proof of this
Theorem.

Proof of Theorem[4 By Theorem 18.1 of Ref. [30], to
prove that an operator A, is a vertex of A, it suffices to
show (1) that A}, isin A and (2) that the set of projectors
onto stabilizer states which are orthogonal to A}, with
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FIG. 5. A sketch of a bipartite graph describing the inclusion
relations of elements a; € E\{0} in a set of isotropic subspaces
I; C E each with the property that |I; N O*| = n. An edge
connects an observable a; on the left to an isotropic subspace
I; on the right if and only if a; € I;.

respect to the Hilbert-Schmidt inner product has rank
4™ — 1 when viewed as vectors of Pauli basis coefficients.

To start we can directly compute the inner product
Tr(II7A}) for any choice of signs n and any projector
onto a stabilizer state II7:

1 1
Tr(IIjA) =5 + > O> (—y O (T, T)

n22n
acl beO*
_1 b S (-1,
2n - n2n
a€eINO*

Since the largest independent set in L(K5,41) has size n,
this inner product is always nonnegative and so A}, € A.
Also, the inner product is zero if and only if |[ITNO*| =n
and 7(a) # n(a) for all a € I N O*. All that remains is
to show that the signs 7 can be chosen so that the set of
stabilizer states for which this inner product is zero has
rank 4”7 — 1.

Consider the bipartite graph G constructed as follows:
G has a vertex for each Pauli observable a € E \ {0},
a vertex for each isotropic subspace I C FE such that

J

|I N O* =n, and an edge connecting a vertex a € E to
an isotropic subspace I C F if a € I. A sketch of this
graph is shown in Fig. [f] We need to show that there
exists a choice of signs for the edges of this graph such
that each off-diagonal block of the corresponding signed
adjacency matrix has rank 4™ — 1.

Using a graph theoretic result proven in Appendix [A]
(see in particular Corollary, to establish this it suffices
to show that the graph G has a matching of size 4" —1. By
Konig’s theorem, this is true if and only if the minimum
vertex cover of G has order 4™ — 1. One vertex cover of
order 4™ —1 is obtained by taking all vertices on the Pauli
operator side of the bipartition. Now we must show that
a smaller vertex cover cannot be obtained by removing
vertices from the Pauli side and adding fewer vertices on
the isotropic subspace side. To do this we compute the
degree of each vertex in the graph. If we can show that
the degree of each vertex on the left hand side of the
graph in Fig. [5]is larger than the degree of every vertex
on the right hand side of the graph, then the minimum
vertex degree has size 4™ — 1 and the result is proved.

Each isotropic subspace I C E has order 2", one of
these elements is 0, and so the degree of each vertex on
the right hand side is 2" — 1.

Now we need to count the number of isotropic sub-
spaces I C E containing each observable a € E \ {0}.
Here we have many cases. Up to an overall phase, each
Pauli observable T, can be written as a product of some
subset of the 2n+ 1 pair-wise anticommuting observables
C1,Cq,...,Co,41 which generate O by taking pair-wise
products. Since the product of all 2n+1 of these Pauli op-
erators is proportional to the identity, this representation
is not unique. Each Pauli observable a will have exactly
two factorizations of the form 7, o« C,,C,,, ---C,,, , one
where k is odd and one where k is even. Therefore, with-
out loss of generality we can restrict our attention to the
factorizations where k is even.

Suppose T, x C,,, Cy, -+ - Cpy,,.. In order for I C E to
contain a, I must contain a set of m generators, each of
which is proportional to a product of a pair of operators
Cu.,Cpy, - ... Once these m generators are specified, the
remaining n — m generators of I must be chosen from
products of pairs of operators from the remaining opera-
tors {C1,Cy, ... }\{Cy,,Cys, ...}. Therefore, the number
of isotropic subspaces I containing a is

SN 1 e
o= | T <2m2 23> SRR <2n+1 22m 2k> (17)
m: j=0 o) =
. om 2n+1-2m
“wr = |0 1
j=1 =1
_Em)lCn=2m)l oo

ml(n —m)l2n



[f(n,m) m\m[ 1 [ 2 ]3] 4]5[2n—1]

1

2 313 3
3 1519 |15

4 105| 45 | 45 |105 15
5 945|315(225|315|945|| 31

TABLE I. The function f(n,m) of eq. evaluated for all m
and for 1 < n < 5. This table, together with the calculation
above shows that f(n,m) > 2™ — 1 for all n and m.

To show that f(n,m) > 2™ — 1 for all n, m, it suffices to
show that logy(2" f(n,m)) > 2n for all m and all suffi-
ciently large n. Then the remaining cases of small n can
be checked directly.

Using Stirling’s approximation

n n\"
V2rn (7> eTIF < pl < V2mn (7> eTom,
e

e

this can be lower bounded as

log, (2" f(n,m)) Zmlogy(m) + (n —m)logy(n —m)

. log, (e)
.

+ (2 —logy(e))n

For details, see Appendix [B|l This last expression is min-
imized for each n at m = n/2. Therefore,

log, (e)

logy (2" f(n,m)) > (2 — logy(e))n + nlogy(n/2) — ———.

6

For n > 6 this is larger than 2n. For the remaining cases
n=1,2,3,4,5 it can be checked directly that f(n,m) >
2™ — 1. These cases are shown in Table [l Therefore,
f(n,m) > 2™ —1 for all n;m. This completes the proof.C]

VI. DISCUSSION

In this work, we presented a novel quasiprobabil-
ity representation of quantum computation with magic
states based on generalized Jordan-Wigner transforma-
tions. We demonstrated that this representation has ef-

ficiently computable update rules with respect to Clif-
ford gates and Pauli measurements. Moreover, it ex-
tends previous representations including those based on
quasiprobabilistic decompositions in projectors onto sta-
bilizer states [8], and the CNC construction [1I]. By
leveraging this new construction we can efficiently sim-
ulate magic state quantum circuits on a larger class of
input states than was previously known, thus pushing
back the boundary between efficiently classically simula-
ble, and potentially advantageous quantum circuits.

This model has a close connection to the probabilistic
model of quantum computation based on the A poly-
topes. Namely, for each number n of qubits, it defines a
new polytope contained inside of the A polytope which
shares some vertices with the A polytope. These vertices
include the previously known CNC vertices [11], 13} B1],
as well as some new infinite families of vertices as shown
by Theorem [2}

Outlook. Our results provide several avenues for fu-
ture research. One possible direction is to look for more
families of vertices of the A polytopes which also have the
line graph structure like those described in Theorem [2]

A more speculative idea is to look at the potential ap-
plication of these results for magic state distillation pro-
tocols. One of our results is a complete characterization
of a new family of vertices of the A polytope. By po-
lar duality [I4] this also gives a full characterization of
new families of facets of the stabilizer polytopes for ev-
ery number of qubits. Facets of the two-qubit stabilizer
polytope have in the past been linked to magic state dis-
tillation. The CNC type facets [IT], 3], as well as the new
facets defined by Theorem [2| could be used in a similar
way for any number of qubits.
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Appendix A: Graph theory results

In the proof of Theorem [2] we use some concepts from graph theory. A signed graph G is a undirected graph G
together with a sign function o : Edge(G) — Z that assigns to each edge e of G a sign (—1)7(®). We say a graph has
full rank if its adjacency matrix has full rank. The perrank of a graph G is the order of the largest subgraph of G
which is a disjoint union of copies of Ky and cycles. If G has order n we say G has full perrank if perrank(G) = n.

We use the following Lemma from Ref. [37]

Lemma 1 Let G be a graph. Then there exists a sign function o for G so that G° has full rank if and only if G has

full perrank.

In a bipartite graph, all cycles are even, so edges can be removed from any cycle of a bipartite graph to give copies
of K5 which cover the same vertices. Therefore, for bipartite graphs the existence of a {1, 2}-factor of order n implies
the existence of a matching of size n. Thus we get the following corollaries
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Corollary 1 Let G be a bipartite graph with adjacency matrix

0 B

A:
BT 0

. (A1)

where B is square. Then there exists a choice of signs o for G so that B has full rank if and only if there exists a
perfect matching of G°.

Corollary 2 Let G be a bipartite graph with adjacency matrix of the form eq. where B is a (not necessarily square)
m X n matriz with m < n. Then there exists a choice of signs o for G so that B has full rank if and only if there
exists a matching of order m.

Appendix B: Lower bound on f(n,m)

Here we prove the lower bound on f(n,m) used in the proof of Theorem (2} namely,

log, (2" f (n,m)) > mlog,(m) + (n — m)logy(n — m) + (2 — logy(€))n — logé(e) .

This proceeds by using the exact form of Stirling’s formula:

log,(2" f(n,m)) =log, ((2m)1) + log, ((2n — 2m)!) — log,(m!) — logy((n — m)!) + logy(2n + 1 — 2m)

log, (e) 1
>_92\" , = _
2 ot o 1 +3 log,(2m) — 2mlog,(e) + 2mlogy(2m)
log,(e) 1
b T+ 5 0 (20— m) = 20— m) ogs(e) + 2(n — m) ogy (2 — m)
logy(e) 1
M 157 B 1 1
o2 2 logy(m) + mlogy(e) + mlogy(m)
log,(e)

1
%l 2y - —m)l —m)l - log, (20 + 1 — 2
Bo—m 1 2 0gy(n —m) + (n —m)logy(e) + (n —m)logy(n — m) + log,(2n + m)

=mlogy(m) + (n — m)logy(n —m) + 2n — nloga(e) + logy(2n + 1 — 2m)

1 logy(e) |+ L ! L
82 oum 1 U —m)+ 1 12m 12(n—m)

>mlogy(m) + (n —m)logy(n — m) 4+ (2 — logy(2n + 1 — 2m)) + log,(e) [%irl _ H
>mlogy(m) + (n —m)logy(n — m) + (2 — logy(e))n — logé(e).

Appendix C: Lower bound on generalized robustness

Lemma 2 For all the vertices described by Theorem @, on any number of qubits n, the robustness R(A}) and the
robustness of magic Rg(Ap), satisfy the inequalities

Ps(Ah) <n?+ 5 +1 (C1)

Proof of Lemma@ Let a,b € R? and let ¢ € R collinear to a and b but not in the convex hull of a and b. Then the
negativity of c relative to a and b is

lla = ¢fl2 + |b = ¢l
lla = bl

lleflr =

Let ¢ be a vertex of A,, as given in Theorem in Cartesian coordinates). Let a be the point on the stabiliser facet
1+ c-x =0 closest to c and let b be the origin, these three points are all collinear. Then we have
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