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A recently introduced classical simulation method for universal quantum computation with magic
states operates by repeated sampling from probability functions [M. Zurel et al. PRL 260404 (2020)].
This method is closely related to sampling algorithms based on Wigner functions, with the important
distinction that Wigner functions can take negative values obstructing the sampling. Indeed, negativity in
Wigner functions has been identified as a precondition for a quantum speed-up. However, in the present
method of classical simulation, negativity of quasiprobability functions never arises. This model remains
probabilistic for all quantum computations. In this paper, we analyze the amount of classical data that
the simulation procedure must track. We find that this amount is small. Specifically, for any number n
of magic states, the number of bits that describe the quantum system at any given time is 2n2 +O(n).

1 Introduction

In an article of 1989 [1], John Archibald Wheeler argued that quantum physics required a new perspective on
reality based on information theoretic concepts. He wrote: “No element in the description of physics shows
itself as closer to primordial than the elementary quantum phenomenon, that is, the elementary device-
intermediated act of posing a yes-no physical question and eliciting an answer or, in brief, the elementary act
of observer-participancy. Otherwise stated, every physical quantity, every it, derives its ultimate significance
from bits, binary yes-or-no indications, a conclusion we epitomize in the phrase, it from bit.”

A prototypical realization of this view on physics has been provided in the description of quantum com-
putation with magic states (QCM) through the Λ polytopes [2], in which the quantum phenomena at hand
are reproduced, without any deviation or approximation, by repeated sampling processes dependent on and
producing bit strings. The “It” in this case is universal quantum computation, and hence all non-relativistic
quantum mechanics in finite-dimensional Hilbert spaces. The “Bits” represent the binary outcomes of Pauli
measurements and the labels of the vertices of the Λ polytopes in the repeated sampling. There are finitely
many such vertices for any number n of magic states.

This description of quantum computation with magic states grew out of the analysis of Wigner function
negativity as a precondition for a quantum computational speedup, a research programme that started with
Refs. [3] and [4]. Specifically, in Ref. [4] it was established that negativity in Gross’ Wigner function [5, 6]
is required for a quantum speedup, under the condition that the Hilbert space dimension is odd. Analogous
results were subsequently established in even dimension, specifically for rebits [7] and qubits [8]. However,
in the end it turned out that once sufficiently general (quasi)probability functions are admitted, there is
no need for any negativity at all [2, 9]. Universal quantum computation, in the magic state model, can be
described by repeated sampling from a generalized phase space whose points are labeled by the vertices of
the Λ polytopes. This process essentially resembles a random walk, with the complication that the transition
function changes from one time step to the next and can depend on the prior sampling history.

A summary of this sampling process is given in Section 2; see in particular Theorem 1 and Algorithm 1.
For now, the gist is displayed in Figure 1. A crucial feature of the Λ polytope formalism is that the quantum
state |Ψ(t)⟩ of the system (Figure 1a) is replaced by a bit string b(t) of bounded length (Figure 1b). That bit
string b(t) is a valid and accurate representation of the quantum system. It should be noted that, in the end,
what needs to be reproduced is the quantum mechanical prediction for the joint distribution of measurement
outcomes. For it, the statistical distribution of the bit strings {b(t), ∀t} matters, not individual values b(t).
However, this is the same for the quantum mechanical states |Ψ(t)⟩. They too are conditioned on prior
measurement outcomes, hence probabilistic.
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(a) (b)

Figure 1: Quantum computation with magic states (a), and its simulation based on Λ polytopes (b). (a) QCM
consists of preparing a quantum register in a magic state |M⟩⊗n, followed by a sequence of Pauli measure-
ments. This requires a device Prep to deliver the magic states to the quantum register QR, and a classical
register CR to store the previous measurement record s, a classical side computation to identify the label a(t)
of the Pauli observable measured in step t, and a measurement device M to perform the measurements and
to output the corresponding results s(t). (b) The overall structure of the classical simulation is the same,
but with the components modified. Prep is replaced by a first sampler Σ that samples from the phase space
distribution of the initial state |M⟩⊗n. There are two classical registers, CR1 and CR2. The former stores the
phase space samples b(t), and the latter the prior measurement record, as in (a). The measurement device
M is replaced by a second sampler Σ′ that takes as input a phase space point b(t) and a Pauli label a(t), and
outputs a new phase space point b(t+1) as well as a measurement outcome s(t). The same information that
in the standard quantum mechanical description is carried by the quantum state |Ψ(t)⟩ is in the Λ polytope
description carried by the bit string b(t).

The question of interest for the present work is how much classical information the simulation of quantum
computations must track, i.e. What is the length of the bit strings b(t)? For example, if it turned out that
those bit strings were very long, say exponentially long in the number n of magic states, this would provide
a convenient explanation for the hardness of classical simulation of universal quantum computation using Λ
polytopes. If the information storage itself is inefficient, so is the processing. However, this is not what we
find. We find that the bit strings b(t) are short. Specifically, they are of length O(n2). Thus, simulation
of universal quantum computation based on Λ polytopes is a small data problem. The presumed hardness
of this simulation must come from the computational hardness of the sampling processes involved, not from
moving around large amounts of data.

The length of the bit strings b(t) labeling vertices of Λn is upper-bounded by log2(|Vn|), with |Vn| the
size of the generalized phase space, i.e., the number of vertices of Λn. To date, an upper bound and a lower
bound are known for this quantity, namely

n2

2
≤ log2(|Vn|) ≤ 4nn2.

The lower bound is by Karanjai, Wallman, and Bartlett [10]. The upper bound comes from the upper bound
theorem of polytope theory [11] (see Appendix A for details).

The gap between the bounds is extremely wide, consistent with both efficient and inefficient storage of
the bit strings b(t). From numerical results it seems that the number of phase space points is growing very
rapidly with n; for n = 1 the number of phase space points is 8, for n = 2 it is 22320, and for n > 2 we don’t
know the precise numbers, but the estimate for n = 3 is already huge.

The following simple insight is crucial for establishing our main result, |b(t)| = O(n2): in the QCM model,
for any fixed value n, all quantum computations start in the same magic state |M⟩⊗n. Therefore, the question
of interest for classical simulation of QCM using Λ polytopes is not “What is the size of the phase space Vn?”,
but rather “What is the size of the region of Vn that can be reached from the initial magic state |M⟩⊗n?”.
This size can be computed, and it turns out to be small. It implies a new upper bound for the length of the
bit strings b(t) that is within a factor of four of the matching lower bound [10]. This is the content of our
main result, Theorem 2, presented in Section 3 below.
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2 Preliminaries

In Ref. [2], a hidden variable model (HVM) is defined for quantum computation with magic states (QCM) [12]—
a universal model of quantum computation in which computation proceeds through a sequence of Clifford
gates and Pauli measurements on an initially prepared “magic state”.

The measurements come from the n-qubit Pauli group Pn, the group generated by the Pauli operators
X, Y , Z acting on n qubits. Modding out overall phases we have Pn/Z(Pn) ∼= Z2n

2 , and WLOG we can fix
a phase convention for the Pauli operators to be

Ta = i−⟨az|ax⟩
n⊗

k=1

Zaz [k]Xax[k]; ∀a = (az, ax) ∈ Zn
2 × Zn

2 =: En

where the inner product ⟨az|ax⟩ is computed modulo 4. The projector corresponding to a Pauli measurement
a ∈ En yielding outcome s ∈ Z2 is denoted Πs

a := (I + (−1)sTa)/2. The gates of the model are chosen from
the Clifford group, which is the normalizer of the Pauli group in the unitary group up to overall phases:
Cℓn = N (Pn)/U(1). They are defined by the property that they map Pauli operators to Pauli operators
under conjugation.

We denote by Herm(H) the space of Hermitian operators on Hilbert space H, and unless otherwise
specified, H (or Hn) is the n-qubit Hilbert space (C2)⊗n. Herm1(H) is the affine subspace of Herm(H)

consisting of operators with unit trace and Herm⪰0
1 (H) is the subset of Herm1(H) consisting of positive

semidefinite operators. Herm⪰0
1 (H) contains the density operators representing physical quantum states.

The state space of the hidden variable model of Ref. [2] is based on the Λ polytopes. Denoting the set of
pure n-qubit stabilizer states by Sn, the Λ polytope for n qubits is defined as

Λn = {X ∈ Herm1(Hn) | Tr(|σ⟩ ⟨σ|X) ≥ 0 ∀ |σ⟩ ∈ Sn} . (1)

For a fixed number n ∈ N of qubits, Λn is a bounded polytope with a finite number of vertices [9]. We denote
the vertices of Λn by {Aα | α ∈ Vn} where Vn is an index set for the vertices. The hidden variable model is
defined by the following theorem.

Theorem 1 (Ref. [2]; Theorem 1) For any number of qubits n ∈ N,

1. Any n-qubit quantum state ρ ∈ Herm⪰0
1 (Hn) can be decomposed as

ρ =
∑
α∈Vn

pρ(α)Aα, (2)

with pρ(α) ≥ 0 for all α ∈ Vn, and
∑

α pρ(α) = 1. I.e. any n-qubit quantum state ρ can be represented
by a probability distribution pρ over Vn.

2. For any Aα, α ∈ Vn, and any Clifford gate g ∈ Cℓn, gAαg
† is a vertex of Λn. This defines an action

of the Clifford group on Vn as gAαg
† =: Ag·α where g · α ∈ Vn.

3. For any Aα, α ∈ Vn, and any Pauli projector Πs
a, we have

Πs
aAαΠ

s
a =

∑
β∈Vn

qα,a(β, s)Aβ , (3)

with qα,a(β, s) ≥ 0 for all β ∈ Vn and s ∈ Z2, and
∑

β,s qα,a(β, s) = 1. I.e. Pauli measurements
are represented by a stochastic map from (phase-space-point, measurement) pairs (α, a) ∈ Vn × En to
(phase-space-point, measurement outcome) pairs (β, s) ∈ Vn × Z2.

A classical simulation algorithm for QCM based on sampling from the defining probability distributions
of this HVM is given in Algorithm 1. The algorithm returns samples from the distribution of measurement
outcomes for the quantum circuit being simulated which agree with the predictions of quantum theory [2].
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Algorithm 1 Classical simulation of a single run of a magic state quantum circuit with input state ρ

1: sample α ∈ Vn according to pρ : Vn → R≥0

2: propagate α through the circuit
3: while the end of the circuit has not been reached do
4: if a Clifford gate g ∈ Cℓn is encountered then
5: update the phase space point according to α ↣ g · α
6: end if
7: if a Pauli measurement a ∈ En is encountered then
8: sample (β, s) ∈ Vn × Z2 according to qα,a
9: return s ∈ Z2 as the outcome of the measurement

10: update the phase space point according to α ↣ β
11: end if
12: end while

3 Main result

In this section we present our main result. First, in section 3.1 we give the result for a simplified version of
the computational model wherein we only allow Pauli measurements, no Clifford gates, and in particular,
we allow only sequences of independent and commuting Pauli measurements. This simplified model is still
universal for quantum computation [13, 14]. Then, in Section 3.2 we give a more general statement of
the main result where we allow computations consisting of arbitary sequences of Clifford gates and Pauli
measurements.

3.1 Simplified case

Although the most general quantum computation in QCM could consist of any sequence of Clifford gates and
Pauli measurements performed on an arbitrary input state, we can make several assumptions simplifying the
computational model while preserving the property of quantum computational universality.

First, in QCM, we usually assume that every computation starts from a fixed magic input state. For
example, using the standard magic state circuit gadget [15, Figure 10.25], any Clifford+T circuit with n
T -gates acting on m qubits can be turned into a QCM circuit (Clifford gates and Pauli measurements only)
on n + m qubits acting on a state of the form |0⟩⊗m ⊗ |H⟩⊗n

where |H⟩ = (|0⟩ + exp(iπ/4) |1⟩)/
√
2. In

general, it suffices to consider input states of the form |0⟩⊗m ⊗ |M⟩n where |M⟩ is a fixed magic state [16].
Second, we can do away with the Clifford gates altogether [7, 13]. To see this, note that the Clifford

gates can always be propagated forward in time through the circuit, conjugating the Pauli measurements
into other Pauli measurements. Once they are propagated past the final measurement in the circuit they can
be removed since they no longer affect the statistics of the measurement outcomes.

We can also do away with the stabilizer part of the input. The Pauli circuit on the m+n-qubit input state
|0⟩⊗m⊗|M⟩⊗n

can be simulated by another circuit consisting of an adaptive sequence of Pauli measurements
acting only on the n-qubit magic part of the input [14, 17]. The stabilizer part is handled by extra classical
processing.

Finally, it suffices to consider only sequences of commuting Pauli measurements up to length n [14].
This is because when a Pauli measurement is encountered which anticommutes with a measurement that
was previously performed, the outcome of the measurement will be uniformly random, and the update of
the state after the measurement can be implemented by a Clifford gate. Therefore, the anticommuting
measurement can always for replaced by a coin flip to determine the measurement outcome and a Clifford
gate to implement the state update which can then be propagated past the future measurements. The longest
sequences of independent pair-wise commmuting Pauli measurements on n qubits have length n.

To summarize, for universal quantum computation, it suffices to consider adaptive sequences of pair-wise
commuting Pauli measurements of length n acting on a fixed magic state of the form |M⟩⊗n

. A simplified
version of the classical simulation algorithm above for circuits of this form is given by Algorithm 2. For a
complete description of the above circuit simplifications, along with a method for compiling a given QCM
circuit into an adaptive Pauli circuit, see Ref. [14].
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Algorithm 2 Classical simulation of a single run of a Pauli-based quantum circuit with input state ρ

1: sample α0 ∈ Vn according to pρ : Vn → R≥0

2: for all at, t ∈ {1, 2, . . . , n} do
3: sample (αt, st) ∈ Vn × Z2 according to qαt−1,at

4: return st ∈ Z2 as the outcome of measurement at
5: update the phase space point according to αt−1 ↣ αt

6: end for

We can now state our main result.

Theorem 2 (Main result) Any quantum computation consisting of a sequence of n independent, pair-wise
commuting Pauli measurements on a fixed magic state |M⟩⊗n

can be simulated by Algorithm 2 using a memory
of 2n2 + 3n bits to specify the phase space points reached.

The proof of this theorem relies on the following result from convex geometry.

Lemma 1 (Carathéodory’s theorem) If a point x of RD lies in the convex hull of a set V , then x can
be written as the convex combination of at most D + 1 points in V .

For a proof of this lemma see for example Ref. [18, §1.6].
Proof of Theorem 2. Since the generalized phase space point operators {Aα | α ∈ Vn} are not a basis

for Herm1(Hn), they are overcomplete, the distributions pρ that represent states in the model of Theorem 1,
and the distributions qα,a that represent Pauli measurements are not unique. Since Λn lives in Herm1(Hn),
a real affine space of dimension 4n − 1, by Lemma 1 there exist choices for the distribution pρ such that
|supp(pρ)| ≤ 4n. Similarly, for each s ∈ Z2, there exist choices for qα,a(−, s) such that |supp(qα,a(−, s))| ≤ 4n.
To start we fix a canonical choice of the probability distributions pρ and qα,a satisfying these properties. With
this canonical choice for the distribution representing the input state of the circuit, specifying a sample from
this distribution requires no more than log2(4

n) = 2n bits.
There are 4n − 1 nontrivial n-qubit Pauli measurements, therefore, specifying each measurement requires

no more than 2n bits. For the tth measurement at, the distribution qαt−1,at
is uniquely specified by the sam-

pling history consisting of states α0, α1, . . . , αt−1, measurements a1, a2, . . . , at−1, and measurement outcomes
s1, s2, . . . , st−1. Once the distribution is fixed, with the canonical choice above, specifying a sample from this
distribution requires no more than 2n+ 1 bits (1 bit for st and 2n bits for αt).

Since the length of the measurement sequence is no more than n, the number of classical bits required to
specify the complete sampling history is no more than

2n︸︷︷︸
α0

+

n∑
t=1

[
2n︸︷︷︸
at

+ 1︸︷︷︸
st

+ 2n︸︷︷︸
αt

]
= 4n2 + 3n.

This initial bound can be improved in a number of ways. First, for the purpose of simulation, we don’t
need to store αn since there are no more measurements. This immediately removes 2n bits. Second, after the
tth measurement, the value of any measurement in the span of a1, a2, . . . , at is already determined. Therefore,
if the t + 1th measurement at+1 is to be independent and commute with the previous measurements, it is

chosen from (Z2n
2 ∩ {a1, a2, . . . , at}⊥)/span(a1, a2, . . . , at) ∼= Z2(n−t)

2 . Specifying a measurement chosen from
this set requires only 2(n− t) bits, not the full 2n bits.

Finally, we can perform another simplification which reduces the number of qubits by 1 after each mea-
surement. After a measurement of a ∈ En giving outcome s ∈ Z2, the relevant state space is projected to
Πs

aΛnΠ
s
a. This is contained in a 4n−1 − 1 dimensional subspace of Herm1(Hn). There exists a Clifford gate

g ∈ Cℓn such that gΠ0
zng

† = Πs
a, and Πs

aΛnΠ
s
a = gΠ0

znΛnΠ
0
zng

† = g(Λn−1 ⊗ |0⟩ ⟨0|)g†. Therefore, after the
measurement the Clifford gate g can be propagated out yielding a Pauli measurement circuit on an input
state with a stabilizer state tensor factor. Then the above mentioned circuit simplification [14, 17] can be used
to remove the stabilizer part of the input. This reduction can be performed after each measurement. This is
similar to the idea behind the reduced classical simulation of Theorem 3 of Ref. [17]. With this dimension
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ρ
a1−−−−→ s1

a2−−−−→ s2
a3−−−−→ s3 · · ·

(a)

pρ
qα0,a1−−−−→ (α1, s1)

aα1,a2−−−−→ (α2, s2)
qα2,a3−−−−→ (α3, s3) · · ·

(b)

α0
a1−−−−→ (α1, s1)

a2−−−−→ (α2, s2)
a3−−−−→ (α3, s3) · · ·

(c)

2n +2n +2n+ 1 +2n +2n+ 1 +2n 2n+ 1 · · ·
(d)

Figure 2: Three descriptions of a quantum computation. (a) A circuit level description. Pauli measurements
a1, a2, . . . are performed on the input state ρ yielding measurement outcomes s1, s2, . . . . (b) The represen-
tation of this computation in the model of Theorem 1. The input state is represented by the probability
distribution pρ, each measurement at is represented by a probability distribution qαt−1,at

. (c) A single run of
the simulation algorithm based on the probabilistic representation of the computation. We start by sampling
from pρ to obtain α0. For each measurement ai we sample from qαt−1,at

to obtain measurement outcome st
and updated state αt. (d) An upper bound on the number of classical bits required to store each piece of the
sampling history of (c) according to Theorem 2.

reduction after each measurement, to specify the sample (αt, st) requires no more than 2(n− t)+1 bits. Note
that this dimension reduction implicitly implements both of the reductions of the previous paragraph.

With these reductions, the complete measurement history can be specified with no more than

2n︸︷︷︸
α0

+

n∑
t=1

[
2(n− t+ 1)︸ ︷︷ ︸

at

+ 1︸︷︷︸
st

+2(n− t)︸ ︷︷ ︸
αt

]
= 2n2 + 3n

classical bits, which is the claimed bound. □

A similar idea as the one used in the proof of Theorem 2 of explicitly tracking the measurement history
of a quantum circuit has previously been used to define a contextual hidden variable model for the stabilizer
subtheory [19].

3.2 General case

Theorem 2 used a simplified version of QCM, where, without loss in computational power, all Clifford gates
have been eliminated, and the measurement sequence is shrunk to at most n commuting Pauli measurements.
In the remainder of this section we demonstrate that the bound on the size of the reachable phase space region
does not increase much if we do not make these simplifications; i.e., if we admit arbitrarily long sequences
of (potentially non-commuting) Pauli measurements, and Clifford gates between them. Specifically, we have
the following additional result.

Corollary 1 Any quantum computation consisting of an arbitrarily long sequence of Pauli measurements
and Clifford unitaries, applied to a fixed magic state |M⟩⊗n

, can be simulated using a memory of 4n2 + 6n
bits to specify the reachable phase space points.

Comparing with Theorem 2 we find that the memory requirement merely doubles; in particular, the quadratic
scaling with the number n of magic states remains unchanged.

Proof of Corollary 1. Every vertex of Λn is in exactly one orbit of vertices with respect to the action
of the Clifford group. Therefore, the number of Clifford orbits travelled by Algorithm 2 is smaller than or
at most equal to the number of vertices travelled. A consequence of Theorem 2 thus is that the number of
equivalence classes travelled by Algorithm 2 is no more than 22n

2+3n.
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At every given point in the classical simulation, the single vertex Aν under consideration by the simulation
algorithm has a product structure, Aν = g(Ãν ⊗ |S⟩ ⟨S|)g†, where |S⟩ ⟨S| is the projector onto an m-qubit
stabilizer state with stabilizer group S, Ãν is a vertex of Λn−m, and g is a Clifford unitary [17].

When switching from Algorithm 2 specialized to the simplified computational model back to the general
Algorithm 1, the following additional situations may occur at any given step: (i) the next operation is a
Clifford unitary, (ii) the next operation is the measurement of a Pauli observable Ta, a ∈ En, such that
±Ta ∈ gSg†, and (iii) the next operation is the measurement of a Pauli observable Ta that does not commute
with all elements of gSg†.

In case (i), the Clifford orbit [Aν ] of Aν doesn’t change. In case (ii), the measurement outcome deter-
ministically follows from the stabilizer, and no update of Aν occurs at all. Hence, no update of [Aν ] occurs
either. In case (iii), the measurement outcome is uniformly random, and for either outcome the ensuing
transformation can be replaced by a Clifford unitary. Thus we are back to case (i)—no update of [Aν ] occurs.
The conclusion is that the number of Clifford orbits of vertices reachable by the more general Algorithm 1
equals the number of orbits reachable by the specialized Algorithm 2 applying to the canonical form of QCMs.

Now, the size of every Clifford orbit of vertices of Λn is upper-bounded by the size |Cℓn| of the n-qubit

Clifford group. Therefore, the number of vertices reachable by Algorithm 1 is bounded by 22n
2+3n × |Cℓn|.

The number of bits required to specify an n-qubit Clifford gate is no more than 2n2+3n (namely, 2n×(2n+1)
bits to specify the conjugation relations of a generating set of Pauli operators including the sign, minus 2n2−n
constraints for preserving the Pauli commutation relations). Hence, the number of bits needed to specify any
vertex reached in the simulation according to Algorithm 1 is no more than 4n2 + 6n, as claimed. □

4 Discussion

To summarize, in this work we have shown that the classical simulation of universal quantum computation
using the Λ-polytopes [2] is a small data problem. Specifically, it is shown that, with respect to the model
of quantum computation with magic states, the number of bits that represent the quantum system at any
stage of the simulation is quadratic in the number n of the magic states. Classical simulation of quantum
computation is (presumably) still hard, but in the present case this hardness does not stem from shuffling
around lots of data but instead from complicated operations on little data.

For illustration, we compare the above classical simulation method to two others, one very different, one
rather similar. The first method is the straightforward simulation of a quantum system obtained by choosing
a specific basis of the Hilbert space at hand, mapping operators to matrices and states to vectors. The state
of the system at any moment in time is now described by exponentially many complex-valued amplitudes.
The bit equivalent of a complex number is a matter of numeric precision, but in any case the amount of data
to be processed is large. The state update is conceptually simple, and the computational hardness derives
from the size of the objects involved. This simulation method and that of Ref. [2] thus represent opposite
ends of the spectrum.

The second simulation method we compare to is that of sampling from Wigner functions [4], applicable
to odd Hilbert space dimension. Here, the overall structure of the simulation is the same as in Ref. [2], i.e.,
repeated sampling from a phase space. There are two important differences, however. In Ref. [4], (i) the
sampling is computationally efficient whenever it applies, but (ii) the sampling procedure does not apply to
all initial magic states. Specifically, it only applies when the Wigner function [5, 6] of the initial state is
positive. Indeed, this is why negativity of the Wigner function is a precondition for computational speedup.
In Ref. [2], (i) the sampling is not guaranteed to be computationally efficient, but (ii) it applies to all possible
initial states.

We highlight two further aspects of the simulation method [2]:

• In the classical simulation of quantum computation using Λ-polytopes, the description of the system’s
state by 2n2+3n bits does not invoke any approximation. The distributions of measurement outcomes
sampled from are the exact quantum-mechanical ones. Thus, the data representing the system is
genuinely discrete1, and for this reason we regard [2] as a realization of Wheeler’s “it from bit” proposal.

1Any continuous parameter dependence is relegated to the sampling probabilities in the first sampling step.
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• Theorem 2 can be generalized to the odd-prime-dimensional qudit case [9]. In this case, the precompila-
tion step reducing the computation to sequences of commuting Pauli measurements is also possible [20],
but again not necessary.

To conclude, we observe that the Λ-polytopes are only beginning to be explored, and they may hold many
more surprises.
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A Upper bound on the number of vertices of Λ

Lemma 2 For any number of qubits n ∈ N, the number of vertices |Vn| of Λn satisfies

log2(|Vn|) ≤ 1 + 4n−1
[
n2 − n+ 2 log2(6e)

]
.

The proof relies on the following lemma bounding the number of stabilizer states for n qubits.

Lemma 3 For any number of qubits n ∈ N, the number of pure n-qubit stabilizer states is |Sn| ≤ 3·2(n2+3n)/2.

Proof of Lemma 3. This can be shown by induction. For the base case, we have |S1| = 6 ≤ 3·2(12+3)/2 = 12.

Now, assume |Sn| ≤ 3 · 2(n2+3n)/2 for some n ∈ N. Then

|Sn+1| =2n+1
n+1∏
k=1

2k + 1

=2(2n+1 + 1) · |Sn|

≤2(2n+1 + 1) · 3 · 2(n
2+3n)

≤3 · 2[(n+1)2+3(n+1)]/2.

Therefore, by induction, |Sn| ≤ 3 · 2(n2+3n)/2 for all n ∈ N. □
Proof of Lemma 2. According to the upper bound theorem of polytope theory [11] (also see Ref. [18,

§8.4]), the number of facets of a D-dimensional polytope with v vertices is bounded by the number of facets
of the D-dimensional cyclic polytope with v vertices, denoted C(v,D). By duality, the number of vertices of
the Λ polytope on n qubits is bounded by the number of vertices of the polar dual of the 4n − 1-dimensional
cyclic polytope with |Sn| vertices.
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The number of vertices of the dual of C(v,D) is [22, §4.7],

fd−1(C(v,D)) =


v

v−m

(
v −m

m

)
for even D = 2m,

2

(
v −m− 1

m

)
for odd D = 2m+ 1.

In the case of Λn, D = 4n − 1, i.e. D is odd and m = 22n−1 − 1, and the number of facets is |Sn|. Therefore,

|Vn| ≤f4n−2 (C(|Sn|, 4n − 1)

=2

(
|Sn| − 22n−1

22n−1 − 1

)
≤2

(
|Sn| − 22n−1

22n−1

)
≤2

(
e(|Sn| − 22n−1)

22n−1

)22n−1

.

In the last line we use a standard upper bound for the binomial coefficient

(
n
k

)
≤
(
en
k

)k
. Then

log2(|Vn|) ≤1 + 22n−1
[
log2(|Sn − 22n−1) + log2(e)− 2n+ 1

]
≤1 + 22n−1

[
log2(3 · 2(n

2+3n)/2)− 2n+ 1 + log2(e)
]

≤1 + 22n−1

[
n2 + 3n

2
− 2n+ 1 + log2(3e)

]
=1 + 4n−1

[
n2 − n+ 2 log2(6e)

]
.

This proves the upper bound. □

We also have the following somewhat simpler bound.

Corollary 2 For any number of qubits n ∈ N, log2(|Vn|) ≤ 4nn2.

Proof of Corollary 2. For n = 1 and n = 2, we can enumerate the vertices of Λn and we find that
the numbers of vertices are 8 and 22320 respectively. These both satisfy the bound. Further, for n ≥ 2,
1 + 4n−1[n2 − n+ 2 log2(6e)] ≤ 4nn2 and so the remaining cases follow immediately from Lemma 2. □
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