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Despite the recent surge in interest in quantum computation and the potential of useful quantum devices in the near future,
the field rests on surprisingly shaky foundations. That is, although there are clear tasks on which quantum computation is
known to outperform classical computation, the source of this quantum advantage is unclear. My research delves into that
critical question at the heart of quantum computation: what is the essential quantum resource that provides this advantage
over classical computation? By focusing on a particular model of quantum computation, known as quantum computation with
magic states, we can make progress on this problem, and we can relate the possibility of quantum computational advantage to
physical and mathematical properties of quantum systems. Similar ideas can then be applied to other models of quantum com-
putation, and potentially to other tasks exhibiting a quantum advantage. This marriage of two fields—quantum information
and quantum foundations—provides fruitful grounds for a deeper understanding of both.

Introduction

The field of quantum computation has seen a huge surge in interest in recent years. In addition to academic interest, these
days big tech companies (e.g. Google, IBM, Microsoft) and tech startups (e.g. Xanadu, PsiQuantum, IonQ) are also involved
in the effort to realize useful quantum technologies. A number of governments have even published official strategies for
the development of quantum science and technology [1H5]]. This surge is not so surprising as quantum computers promise
to be able to solve some computational problems that are intractable for any classical computer, even the largest modern
supercomputers. Although it was originally conceived in the early 1980s as a means of simulating quantum systems 6l |7]], the
fire has been fueled by the more recent development of quantum algorithms for useful tasks with broader appeal [8510]. As a
result, it is now widely believed that the era of quantum advantage is upon us and that we are entering the realm of so-called
Noisy Intermediate-Scale Quantum (NISQ) computation [[11}|12].

But in spite of the age of the field and the recent surge in interest, a crucial question at the foundation of quantum
computation remains unresolved, namely, what is the essential quantum resource that provides the quantum computational
advantage over classical computation? This is clearly an important question as its resolution could inform the design of
quantum computer architectures and the development of new quantum algorithms.

Classical simulation of quantum computations A common way to approach this question is to try to determine families
of quantum circuits which can be efficiently simulated by a classical computer [[13H15]]. Once an efficient classical simulation
algorithm is established for a certain family of circuits, it can be concluded that some quantum resource beyond the scope
of that family is required for the possibility of a quantum computational advantage. As a simple example of this approach,
consider quantum circuits on n qubits consisting of only local operations and local measurements performed on an unentangled
initial state. Although you may have access to many qubits resulting in a large Hilbert space dimension (exponential in n),
if the initial state is unentangled and the operations do not allow for the creation of entanglement, you are confined to a very
small subspace of the full Hilbert space (dimension linear in n#). This results in these circuits being efficiently simulable
classically. Therefore, we can conclude that entanglement is necessary for a quantum computational advantage. The form of
this entanglement can be different depending on the model of quantum computation: in the measurement-based model [16]
it is all contained in the preparation of the initial state whereas in the circuit model the initial state is unentangled and the
entanglement is generated by the unitary gates of the circuit, but the fact remains entanglement in some form is necessary [13].

As another example, consider quantum circuits consisting of only Toffoli gates. These gates are universal for classical
computation, but they cannot perform arbitrary quantum computations because they cannot generate quantum superpositions
of computational basis states. This limitation also results in an efficient classical simulation of these circuits. Supplementing
the Toffoli gates by Hadamard gates, which do generate superposition states, we obtain a universal gate set for quantum
computation [17]. Thus, we can conclude that superposition in some form is also necessary for a quantum computational
advantage. In addition to entanglement and superposition, many other candidates for essential quantum properties have been
proposed, such as large Hilbert space dimension, contextuality, and Wigner function negativity. Many of these result in similar
necessary conditions for quantum advantage.



Magic states and Wigner functions The question posed above can be approached in a more systematic way by focusing
on the model of quantum computation with magic states (QCM) [ 18} |19]—a universal model of quantum computation closely
related to the circuit model, and one of the leading candidates for scalable fault-tolerant quantum computation [20]. In
QCM, the allowed operations are restricted to a subset of unitary gates forming the so-called Clifford group, as well as
Pauli measurements. These operations alone are not sufficient for a quantum computational advantage, and in fact, any
quantum circuit consisting of only these operations can be simulated efficiently on a classical computer [21} [22]]. Quantum
computational universality is restored in QCM through the inclusion of additional “magic” quantum states at the input of the
circuit. Therefore, this model allows us to refine the question posed above. Instead of asking broadly “which non-classical
resources are required for a quantum computational advantage?”, we can focus on the quantum states and ask “which states
could be useful for QCM?”

A partial answer to this question is provided by quasi-probability representations like the Wigner function [23]. The
Wigner function is the closest quantum mechanical counterpart to the classical notion of a probability distribution over a phase
space, but unlike a probability distribution it can take negative values (making it a quasi-probability function). Accordingly,
negativity in the Wigner function has traditionally been considered an indicator distinguishing classically behaving quantum
states from those that exhibit genuinely quantum features [24} 25]. When adapted to finite-dimensional quantum mechanics,
the setting relevant for quantum computation, quantum states are represented by a discrete Wigner function [[26-32]—a quasi-
probability function over a finite set (a generalized phase space) usually satisfying certain constraints [33}34].

Veitch et al. [[14] applied this idea to QCM and showed that a necessary condition for a quantum computational speedup
on odd-prime-dimensional qudits (quantum systems with odd prime Hilbert space dimension) is that the Wigner function of
the input state of the quantum circuit must take negative values (this result is easily extended to QCM on qudits with any odd
dimension [35]]). In particular, the amount of negativity in the Wigner function quantifies the cost of classical simulation of a
quantum computation [36] with simulation being efficient if the Wigner function is non-negative everywhere. At a technical
level, establishing this connection between Wigner function negativity and the possibility of a quantum advantage rests on
two facts about the Wigner function [30-32]], namely (a) that it is covariant with respect to all Clifford transformations, and
(b) that its positivity is preserved under all Pauli measurements.

It turns out, non-negativity of the discrete Wigner function also implies the existence of a non-contextual (read classical)
hidden variable model (HVM) describing the computation [[15 |37} 38]]. Thus, two traditional notions of non-classicality for
quantum systems—Wigner function negativity and failure of a classical HVM description—herald a quantum computational
advantage over classical computation. This aligns with work that shows contextuality is required for quantum advantage in
other settings [39} 40].

Previous research

No-go theorems for discrete Wigner functions in even-dimensions This is a satisfying result, but as mentioned above it
applies only to qudits with odd Hilbert space dimension. The case of even dimensions (including systems of multiple qubits) is
much trickier [29,141-47]]. Do these results on Wigner function negativity and contextuality carry over to even dimensions?—
The Peres-Mermin square proof of contextuality [48]] prevents the latter. Regarding the former, until recently an answer was
known only in certain special cases [44].

In Ref. [34]], we resolved this question for the general case. Therein, we provided two main technical contributions:
first, we formalized the obstructions to the existence of Wigner functions with the properties needed for describing quantum
computation mentioned previously. Second, we applied these general results to the case of even dimension. The result is,
in all even dimensions, Wigner functions constructed from operator bases cannot be Clifford covariant and cannot represent
Pauli measurement positively. We found that the source of the difference between even and odd dimensions is a question of
cohomology.

This appearance of cohomology may seem surprising, but in fact, homology and cohomology have a long history in
physics [49]]. Cohomological phenomena have also recently found widespread use in the field of quantum computation, for
example: (i) quantum error correction with the Kitaev surface code [50, |5 1f], and its measurement-based counterpart with 3D
cluster states [52], (ii) proofs of contextuality of quantum mechanics [53H55]], and (iii) the contextuality of measurement-based
quantum computation (MBQC) [39,56]. Cohomology emerges as a language to navigate this web of fundamental facts about
quantum computation, and to explain those facts in a unified fashion.

Alternative quasi-probability representations of quantum computation The idea of negativity as a precondition for
quantum advantage can be salvaged for the case of even dimensions if one admits more general quasi-probability functions,
specifically, quasi-probability functions that do not stem from an operator basis, and hence are not uniquely defined for each
state [57]. One example of this is obtained by defining a quasi-probability function over stabilizer states [45]], bypassing



Wigner functions entirely. It has the advantage of efficiently simulating all QCM circuits on all probabilistic mixtures of
stabilizer states.

In Ref. [43]], we provided the previously missing phase space picture for QCM on multi-qubit systems. Therein, we define
a new quasi-probability function for all Hilbert space dimensions, with a phase space of increased size in accordance with
Ref. [57]. In all dimensions, the function is Clifford covariant and the positivity of the representation is preserved under all
Pauli measurements. When applied to odd dimensions, it reproduces and extends the existing Wigner function arguments [[14],
and for multiple qubits, this simulation contains the efficient classical simulation of stabilizer mixtures [45] as a special case.
We thus reproduce the essential features of the odd-dimensional scenario in all dimensions.

A hidden variable model for universal quantum computation As noted, obtaining the unified phase space picture of
QCM above required relaxing some of the assumptions that traditionally go into the definition of the Wigner function. This
relaxation is required in order for the representation to effectively describe quantum computation in all dimensions [34} |57],
but it leads to some interesting consequences.

In Refs. [47, 58] we showed that, if sufficiently general quasi-probability representations are admitted, we can define a
fully probabilistic representation of QCM. That is, a hidden variable model can be defined which represents all quantum states,
operations, and measurements relevant for QCM using only (non-negative) probabilities. This model is structurally similar
to previously defined quasi-probability representations (modulo absence of negativity) and it leads to a classical simulation
method for universal quantum computation based on sampling from the defining probability distributions. The model is based
on the so-called A polytopes—polytopes in the space of Hermitian operators on the multi-qudit Hilbert space which contain
the space of physical quantum states (see e.g. Ref. [[58] for their definition). We identify the generalized phase space points of
the model with the vertices of these polytopes.

This model appears classical and this gives us an interesting puzzle. Namely, if any quantum computation can be simulated
by sampling from a finite family of probability distributions, then where is the quantumness that provides the advantage for
quantum computation hiding?

Trading negativity for complexity The absence of negativity in the HVM of Refs. [47, |58]] comes at a cost. We can no
longer guarantee that the generalized phase space points over which the model is defined (i.e. the vertices of the A polytopes)
have efficiently computable state update rules under Clifford gates and Pauli measurements. Therefore, although the model can
classically simulate any universal quantum computation (magic state quantum computations on any input state), the simulation
is not guaranteed to be efficient in general.

There are, however, some special cases in which the simulation is efficient. For example, for odd-dimensional qudits, the
phase space point operators which define the odd-dimensional Wigner function are vertices of the A polytopes [58]]. Similarly,
in the multi-qubit case, the phase space point operators of described in the unified phase space picture [43] above are also
vertices of A [47, [59], these are the so-called CNC vertices. The update of these vertices under Clifford gates and Pauli
measurements will be efficiently computable classically, and so the simulation algorithm is efficient whenever the support of
the probability distribution representing the input state of the circuit is restricted to vertices of this type. In other words, these
subsets of A vertices define sub-polytopes inside the full A-polytopes, wherein the simulation remains efficient.

Future work

The observation above leaves us with a clear path forward, which proceeds in steps.

. First, some sub-polytope models inside A provide efficient classical simulation of quantum computations, but if a quantum
computational advantage is possible as is commonly believed then this efficiency must breakdown somewhere in between the
CNC sub-polytope model and the full A polytope. Now we can probe this phenomenon by characterizing more vertices of
A. The more vertices we can efficiently characterize, the more quantum computations we can efficiently simulate classically,
thus effectively pushing back the boundary between classical and quantum. Some progress has been made in this regard. In
Ref. [60], some new vertices were characterized, and in Ref. [[61] we found new infinite families of vertices for all numbers
of qubits. That said, the vertices characterized so far remain a small fraction of the total number of vertices for n > 3 qubits,
and so there is still much work to be done here and much to be gained from it.

. Second, since negativity in a quasi-probability function is no longer the source of inefficiency of classical simulation, ineffi-
ciency must come another source. One early suggestion was that it came from a blowup in the size of the generalized phase
space of the model. Although seemingly a reasonable suggestion, we recently ruled this out as the source of inefficiency
as well [62]]. The only possibility remaining is that it lies somewhere in the sampling from the probability distributions that
represent states and measurements in the model. We would like to be able to better describe this source of the inefficiency in
the classical simulation algorithm.



3. Finally, in the past sources of inefficiency in the classical simulation of quantum computation were linked to traditional indi-
cators of non-classicality in quantum theory, such as contextuality [[15}38]. We would like to determine how the inefficiency
in the classical simulation based on the A polytopes relates to other notions of non-classicality like generalized contextuality.
Alternatively, here we could reverse this process, and derive an indicator of non-classicality from the source of inefficiency
found in the first two steps above. This indicator could then be applied to other quantum information processing tasks, and
possibly to the foundations of quantum computation and quantum theory.

Solutions to the problems proposed here would allow us to better characterize the foundation on which the phenomenon of
quantum computational advantage rests. As a result, they also have the potential to significantly influence design of quantum
computers and new quantum algorithms both in the NISQ era and beyond.

The research proposed here is, in part, a continuation of work that began during the course of my PhD. There are many
reasons for continuing this line of research. As demonstrated above, although significant progress has been made, there is
still much work to be done and much to be gained from pursuing this line of research further. In addition, the A polytopes
are still relatively new objects [47, |58]]. As a result, some information is known about them [58| |60-62]], but there is much
still to be discovered. In particular, they have so far only been used for the problem of characterizing quantum computational
advantages in the magic state model. Some progress has been made in extending their applicability beyond this model [62]],
but we believe there could yet be more applications.
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